Over the last years, more and more sport related data are being collected, stored, and analyzed to give valuable insights. Football is no exception to this trend. An important way of identifying a team's "style" of play is through analyzing passing sequences. However, passing sequences either concentrate on the specific players involved or the structure of passes and ignore where these sequences took place. In this paper, we focus on identifying frequent passing zone subsequences that lead to created or conceded goal scoring opportunities. We partition the pitch into a set of disjoint zones and apply sequential pattern mining. Our experimental study on the 2020/21 Danish Superliga season shows that our method is able to predict goal scoring opportunities better than random subsequences that occurred, in median, 99.5% of the cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.