The NIST DSE Plant Identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. To compete in the competition, I created a pipeline to perform three remote sensing tasks.First, a NDVI-and height-thresholded watershed segmentation was performed to identify individual tree crowns using LIDAR height measurements. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset's dimensionality through PCA and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well. The NIST DSE Plant Identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. To compete in the competition, I created a pipeline to perform three remote sensing tasks. First, an NDVI-and height-thresholded watershed segmentation was performed to identify individual tree crowns using LIDAR height measurements. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset's dimensionality through PCA and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.
Traditional acquisition methods for generating digital surface models (DSMs) of infrastructure are either low resolution and slow (total station-based methods) or expensive (LiDAR). By contrast, photogrammetric methods have recently received attention due to their ability to generate dense 3D models quickly for low cost. However, existing frameworks often utilize many manually measured control points, require a permanent RTK/PPK reference station, or yield a reconstruction accuracy too poor to be useful in many applications. In addition, the causes of inaccuracy in photogrammetric imagery are complex and sometimes not well understood. In this study, a small unmanned aerial system (sUAS) was used to rapidly image a relatively even, 1 ha ground surface. Model accuracy was investigated to determine the importance of ground control point (GCP) count and differential GNSS base station type. Results generally showed the best performance for tests using five or more GCPs or when a Continuously Operating Reference Station (CORS) was used, with vertical root mean square errors of 0.026 and 0.027 m in these cases. However, accuracy outputs generally met comparable published results in the literature, demonstrating the viability of analyses relying solely on a temporary local base with a one hour dwell time and no GCPs.
The National Institute of Standards and Technology data science evaluation plant identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. I created a pipeline to perform three remote sensing tasks. First, a marker-controlled watershed segmentation thresholded by vegetation index and height was performed to identify individual tree crowns within the canopy height model. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset’s dimensionality through principle component analysis and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.