The Clouds and the Earth’s Radiant Energy System (CERES) project has provided the climate community 15 years of globally observed top-of-the-atmosphere fluxes critical for climate and cloud feedback studies. To accurately monitor the earth’s radiation budget, the CERES instrument footprint fluxes must be spatially and temporally averaged properly. The CERES synoptic 1° (SYN1deg) product incorporates derived fluxes from the geostationary satellites (GEOs) to account for the regional diurnal flux variations in between Terra and Aqua CERES measurements. The Edition 4 CERES reprocessing effort has provided the opportunity to reevaluate the derivation of longwave (LW) fluxes from GEO narrowband radiances by examining the improvements from incorporating 1-hourly versus 3-hourly GEO data, additional GEO infrared (IR) channels, and multichannel GEO cloud properties. The resultant GEO LW fluxes need to be consistent across the 16-satellite climate data record. To that end, the addition of the water vapor channel, available on all GEOs, was more effective than using a reanalysis dataset’s column-weighted relative humidity combined with the window channel radiance. The benefit of the CERES LW angular directional model to derive fluxes was limited by the inconsistency of the GEO cloud retrievals. Greater success was found in the direct conversion of window and water vapor channel radiances into fluxes. Incorporating 1-hourly GEO fluxes had the greatest impact on improving the accuracy of high-temporal-resolution fluxes, and normalizing the GEO LW fluxes with CERES greatly reduced the monthly regional LW flux bias.
Abstract:The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than ±0.6%/yr for most VIS bands, and ±2.5%/yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently
OPEN ACCESSRemote Sens. 2014, 6 2810 calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.
Abstract:The Clouds and the Earth's Radiant Energy System (CERES) project relies on geostationary (GEO) imager derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. Anchoring the GEO visible calibration to the MODIS reference calibration and stability is critical for consistent fluxes and cloud retrievals across the 16 GEO imagers utilized in the CERES record. The CERES Edition 4A used GEO and MODIS ray-matched radiance pairs over all-sky tropical ocean (ATO-RM) to transfer the MODIS calibration to the GEO imagers. The primary GEO ATO-RM calibration was compared with the deep convective cloud (DCC) ray-matching and invariant desert/DCC target calibration methodologies, which are all tied to the same Aqua-MODIS calibration reference. Results indicate that most GEO record mean calibration method biases are within 1% with respect to ATO-RM. Most calibration method temporal trends were within 0.5% relative to ATO-RM. The monthly gain trend standard errors were mostly within 1% for all methods and GEOs. The close agreement amongst the independent calibration techniques validates all methodologies, and verifies that the coefficients are not artifacts of the methodology but rather adequately represent the true GEO visible imager degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.