The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling, by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1; and included both poseprediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking subchallenge, in which the protein coordinates from all of the cocrystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.
<div><div><div><p>The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling, by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1; and included both pose- prediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking sub-challenge, in which the protein coordinates from all of the co-crystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.</p></div></div></div>
<div>The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.<br></div>
Current polymorph prediction methods, known as lattice energy minimization, seek to determine the crystal lattice with the lowest potential energy, rendering it unable to predict solvent dependent metastable form crystallization. Facilitated by embarrassingly parallel, multiple replica, large-scale molecular dynamics simulations, we report on a new method concerned with predicting crystal structures using the kinetics and solubility of the low energy polymorphs predicted by lattice energy minimization. The proposed molecular dynamics simulation methodology provides several new predictions to the field of crystallization. (1) The methodology is shown to correctly predict the kinetic preference for β-glycine nucleation in water relative to α- and γ-glycine. (2) Analysis of nanocrystal melting temperatures show γ- nanocrystals have melting temperatures up to 20 K lower than either α- or β-glycine. This provides a striking explanation of how an energetically unstable classical nucleation theory (CNT) transition state complex leads to kinetic inaccessibility of γ-glycine in water, despite being the thermodynamically preferred polymorph predicted by lattice energy minimization. (3) The methodology also predicts polymorph-specific solubility curves, where the α-glycine solubility curve is reproduced to within 19% error, over a 45 K temperature range, using nothing but atomistic-level information provided from nucleation simulations. (4) Finally, the methodology produces the correct solubility ranking of β- > α-glycine. In this work, we demonstrate how the methodology supplements lattice energy minimization with molecular dynamics nucleation simulations to give the correct polymorph prediction, at different length scales, when lattice energy minimization alone would incorrectly predict the formation of γ-glycine in water from the ranking of lattice energies. Thus, lattice energy minimization optimization algorithms are supplemented with the necessary solvent/solute dependent solubility and nucleation kinetics of polymorphs to predict which structure will come out of solution, and not merely which structure has the most stable lattice energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.