A new ARC-class, highly-radiative, pulsed, L-mode, burning plasma scenario is developed and evaluated as a candidate for future tokamak reactors. Pulsed inductive operation alleviates the stringent current drive requirements of steady-state reactors, and operation in L-mode affords ELM-free access to $\sim90\%$ core radiation fractions, significantly reducing the divertor power handling requirements. In this configuration the fusion power density can be maximized despite L-mode confinement by utilizing high-field to increase plasma densities and current. This allows us to obtain high gain in robust scenarios in compact devices with $P_\mathrm{fus} > 1000\,$MW despite low confinement. We demonstrate the feasibility of such scenarios here; first by showing that they avoid violating 0-D tokamak limits, and then by performing self-consistent integrated simulations of flattop operation including neoclassical and turbulent transport, magnetic equilibrium, and RF current drive models. Finally we examine the potential effect of introducing negative triangularity with a 0-D model. Our results show high-field radiative pulsed L-mode scenarios are a promising alternative to the typical steady state advanced tokamak scenarios which have dominated tokamak reactor development.
Pumpout of argon ions by ICRF waves has been observed in C-Mod deuterium L- and I-mode plasmas that had a substantial hydrogen fraction. The effect is manifested by a reduction of core argon x-ray brightness up to a factor of 90% on time scales ~10s of milliseconds following injection of ICRF power. For Ar^16+, the pumpout is strongest for hydrogen minority concentrations between 0.25 and 0.4, when the ICRF waves are not expected to result in minority heating. Modeling with the TORIC code suggests that the pumpout process occurs when the H/D mode conversion layer overlaps with the 2^nd harmonic impurity resonance layer. The magnitude of the argon pumpout is independent of ICRF power above an apparent threshold of ~500 kW, independent of electron density and appears to decrease as the plasma current is increased. Potential application as a heavy impurity control tool in reactors is discussed.
In this paper we present an experimental study of edge turbulence in the Large Plasma Device at UCLA. We utilize a scan of discharge power and prefill pressure (neutral density) to show experimentally that turbulent density fluctuations decrease with decreasing density gradient, as predicted for resistive drift-wave turbulence (RDWT). As expected for RDWT, we observe that the cross-phase between the density and potential fluctuations is close to 0. Moreover, the addition of an electron temperature gradient leads to a reduction in the amplitude of the density fluctuations, as expected for RDWT. However, counter to theoretical expectations, we find that the potential fluctuations do not follow the same trends as the density fluctuations for changes either in density gradients or the addition of a temperature gradient. The disconnect between the density and potential fluctuations is connected to changes in the parallel flows as a result of differences in the prefill pressure, i.e. neutral density. Further analysis of the density and potential fluctuation spectra show that the electron temperature gradient reduces the low frequency fluctuations up to $10 \,{\rm kHz}$ and the introduction of a temperature gradient leads to an unexpected ${\sim }{\rm \pi}$ shift of the density–potential cross-phase at ${\sim }10\,{\rm kHz}$ , while maintaining the typical resistive drift-wave cross-phase at lower frequencies. These experiments partly confirm existing knowledge on resistive drift-wave turbulence, but also introduce new observations that indicate a need for dedicated nonlinear three-dimensional turbulence simulations that include neutrals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.