Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system l-amino acid transport is blocked. We identify SLC7A5 as the predominant system l-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.
[1] Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO 2 and key reactive GHGs (CO, NO x , and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5°Â 0.5°spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO 2 /yr, 438-568 Tg CO/yr, 11-16 Tg NO x /yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO 2 ), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO 2 /yr, 243 Tg CO/yr, 3 Tg NO x /yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.
Purpose Investigate the effect of age category (1–9 years vs 10–18 years), sex, Gross Motor Function Classification System (GMFCS) level, and presence of dystonia on changes in eight function test parameters 24 months after selective dorsal rhizotomy (SDR). Methods Prospective, single-center study of all children aged 3–18 years with bilateral cerebral palsy with spasticity who underwent SDR at a tertiary pediatric neurosurgery center between 2012 and 2019. A linear mixed effects model was used to assess longitudinal changes. Results From 2012 to 2019, 42 children had follow-up available at 24 months. Mean GMFM-66 scores increased after SDR (mean difference 5.1 units: 95% CI 3.05–7.13, p < 0.001). Statistically significant improvements were observed in CPQoL, PEDI Self-care and Mobility, 6MWT, Gillette, and MAS scores. There was no significant difference in the improvements seen for age category, sex, GMFCS level, and presence of dystonia for most of the parameters tested (5/8, 6/8, 5/8, and 6/8 respectively). Conclusion SDR may improve gross and fine motor function, mobility and self-care, quality of life, and overall outcome based on extensive scoring parameter testing at 24 months. Atypical patient populations may benefit from SDR if appropriately selected. Multi-center, prospective registries investigating the effect of SDR are required.
Non-alcoholic fatty liver disease (NAFLD) is associated with overweight/obesity, metabolic syndrome and type 2 diabetes (T2D) due to chronic caloric excess and physical inactivity. Previous meta-analyses have confirmed associations between ultra-processed food (UPF) intake and obesity and T2D. We aim to ascertain the contribution of UPF consumption to the risk of developing NAFLD. We performed a systematic review and meta-analysis (PROSPERO (CRD42022368763)). All records registered on Ovid Medline and Web of Science were searched from inception until December 2022. Studies that assessed UPF consumption in adults, determined according to the NOVA food classification system, and that reported NAFLD determined by surrogate (steatosis) scores, imaging or liver biopsy were included. The association between UPF consumption and NAFLD was assessed using random-effects meta-analysis methods. Study quality was assessed, and evidence credibility evaluated, using the Newcastle Ottawa Scale and NutriGrade systems, respectively. A total of 5454 records were screened, and 112 records underwent full text review. From these, 9 studies (3 cross-sectional, 3 case-control and 3 cohort), analysing 60,961 individuals, were included in the current review. Both moderate (vs. low) (pooled relative risk 1.03 (1.00–1.07) (p = 0.04) (I2 = 0%)) and high (vs. low) (1.42 (1.16–1.75) (<0.01) (I2 = 89%)) intake of UPF significantly increased the risk of NAFLD. Funnel plots demonstrate low risk of publication bias. Consumption of UPF is associated with NAFLD with a dose–response effect. Public health measures to reduce overconsumption of UPF are imperative to reduce the burden of NAFLD, and the related conditions, obesity and T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.