The hares and rabbits belonging to the family Leporidae have a nearly worldwide distribution and approximately 72% of the genera have geographically restricted distributions. Despite several attempts using morphological, cytogenetic, and mitochondrial DNA evidence, a robust phylogeny for the Leporidae remains elusive. To provide phylogenetic resolution within this group, a molecular supermatrix was constructed for 27 taxa representing all 11 leporid genera. Five nuclear (SPTBN1, PRKCI, THY, TG, and MGF) and two mitochondrial (cytochrome b and 12S rRNA) gene fragments were analyzed singly and in combination using parsimony, maximum likelihood, and Bayesian inference. The analysis of each gene fragment separately as well as the combined mtDNA data almost invariably failed to provide strong statistical support for intergeneric relationships. In contrast, the combined nuclear DNA topology based on 3601 characters greatly increased phylogenetic resolution among leporid genera, as was evidenced by the number of topologies in the 95% confidence interval and the number of significantly supported nodes. The final molecular supermatrix contained 5483 genetic characters and analysis thereof consistently recovered the same topology across a range of six arbitrarily chosen model specifications. Twelve unique insertion-deletions were scored and all could be mapped to the tree to provide additional support without introducing any homoplasy. Dispersal-vicariance analyses suggest that the most parsimonious solution explaining the current geographic distribution of the group involves an Asian or North American origin for the Leporids followed by at least nine dispersals and five vicariance events. Of these dispersals, at least three intercontinental exchanges occurred between North America and Asia via the Bering Strait and an additional three independent dispersals into Africa could be identified. A relaxed Bayesian molecular clock applied to the seven loci used in this study indicated that most of the intercontinental exchanges occurred between 14 and 9 million years ago and this period is broadly coincidental with the onset of major Antarctic expansions causing land bridges to be exposed.
Bats (Order Chiroptera), the only mammals capable of powered flight and sophisticated laryngeal echolocation, represent one of the most species-rich and ubiquitous orders of mammals. However, phylogenetic relationships within this group are poorly resolved. A robust evolutionary tree of Chiroptera is essential for evaluating the phylogeny of echolocation within Chiroptera, as well as for understanding their biogeographical history. We generated 4 kb of sequence data from portions of four novel nuclear intron markers for multiple representatives of 17 of the 18 recognized extant bat families, as well as the putative bat family Miniopteridae. Three echolocation-call characters were examined by mapping them onto the combined topology: (1) high-duty cycle versus low-duty cycle, (2) high-intensity versus low-intensity call emission, and (3) oral versus nasal emission. Echolocation seems to be highly convergent, and the mapping of echolocation-call design onto our phylogeny does not appear to resolve the question of whether echolocation had a single or two origins. Fossil taxa may also provide insight into the evolution of bats; we therefore evaluate 195 morphological characters in light of our nuclear DNA phylogeny. All but 24 of the morphological characters were found to be homoplasious when mapped onto the supermatrix topology, while the remaining characters provided insufficient information to reconstruct the placement of the fossil bat taxa with respect to extant families. However, a morphological synapomorphy characterizing the Rhinolophoidea was identified and is suggestive of a separate origin of echolocation in this clade. Dispersal-Vicariance analysis together with a relaxed Bayesian clock were used to evaluate possible biogeographic scenarios that could account for the current distribution pattern of extant bat families. Africa was reconstructed as the center of origin of modern-day bat families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.