The biomedical literature can be seen as a large integrated, but unstructured data repository. Extracting facts from literature and making them accessible is approached from two directions: manual curation efforts develop ontologies and vocabularies to annotate gene products based on statements in papers. Text mining aims to automatically identify entities and their relationships in text using information retrieval and natural language processing techniques. Manual curation is highly accurate but time consuming, and does not scale with the ever increasing growth of literature. Text mining as a high-throughput computational technique scales well, but is error-prone due to the complexity of natural language. How can both be married to combine scalability and accuracy? Here, we review the state-of-the-art text mining approaches that are relevant to annotation and discuss available online services analysing biomedical literature by means of text mining techniques, which could also be utilised by annotation projects. We then examine how far text mining has already been utilised in existing annotation projects and conclude how these techniques could be tightly integrated into the manual annotation process through novel authoring systems to scale-up high-quality manual curation.
Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future.Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genomewide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.