Optical imaging through a thin planar silver layer has been achieved by utilizing near-field lithography techniques. A 120 nm thick silver lens that was placed 60 nm below a patterned mask, imaged the mask’s features onto a photosensitive material located 60 nm below the silver. The entire structure was exposed from above with a mercury lamp. Features sizes as small as 350 nm (at a 700 nm period) were imaged onto the photosensitive material, demonstrating the lensing ability of the planar silver slab.
Articles you may be interested inEvidence of double layer quantum dot formation in a silicon-on-insulator nanowire transistor Appl. Phys. Lett. 86, 043101 (2005); 10.1063/1.1854738 Isolated double quantum dot capacitively coupled to a single quantum dot single-electron transistor in silicon
In this paper we present a novel approach to fabricate single-electron devices utilizing different self-organization and self-alignment effects. Silicon quantum dots (QDs) are obtained employing reactive ion etching (RIE) into a silicon-on-insulator (SOI) substrate with a selfassembled etch mask. Electrodes with nanometer separation are fabricated and aligned to the QDs by means of a controlled electromigration process. The tunneling rates of the devices are defined by the native oxide covering the silicon QDs and can be adjusted by self-limiting thermal oxidation. The devices show clear Coulomb blockade behavior as well as Coulomb staircase features. In some samples also a gate influence is present giving rise to Coulomb diamonds in the differential conductance diagram.Mater. Res. Soc. Symp. Proc. Vol. 958
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.