The multiplexing capabilities of isobaric mass tag-based protein quantification, such as Tandem Mass Tags or Isobaric Tag for Relative and Absolute Quantitation have dramatically increased the scope of mass spectrometry-based proteomics studies. Not only does the technology allow for the simultaneous quantification of multiple samples in a single MS injection, but its seamless compatibility with extensive sample prefractionation methods allows for comprehensive studies of complex proteomes. However, reporter ion-based quantification has often been criticized for limited quantification accuracy due to interference from coeluting peptides and peptide fragments. In this study, we investigate the extent of this problem and propose an effective and easy-to-implement remedy that relies on spiking a 6-protein calibration mixture to the samples. We evaluated our ratio adjustment approach using two large scale TMT 10-plex data sets derived from a human cancer and noncancer cell line as well as E. coli cells grown at two different conditions. Furthermore, we analyzed a complex 2-proteome artificial sample mixture and investigated the precision of TMT and precursor ion intensity-based label free quantification. Studying the protein set identified by both methods, we found that differentially abundant proteins were assigned dramatically higher statistical significance when quantified using TMT. Data are available via ProteomeXchange with identifier PXD003346.
Equal mitotic chromosome segregation is critical for genome integrity and is monitored by the spindle assembly checkpoint (SAC). We have previously shown that the consensus phosphorylation motif of the essential SAC kinase Monopolar spindle 1 (Mps1) is very similar to that of Polo-like kinase 1 (Plk1). This prompted us to ask whether human Plk1 cooperates with Mps1 in SAC signaling. Here, we demonstrate that Plk1 promotes checkpoint signaling at kinetochores through the phosphorylation of at least two Mps1 substrates, including KNL-1 and Mps1 itself. As a result, Plk1 activity enhances Mps1 catalytic activity as well as the recruitment of the SAC components Mad1:C-Mad2 and Bub3:BubR1 to kinetochores. We conclude that Plk1 strengthens the robustness of SAC establishment at the onset of mitosis and supports SAC maintenance during prolonged mitotic arrest.
The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications.DOI: http://dx.doi.org/10.7554/eLife.12187.001
The transforming protozoan Theileria recruits Plk1, a host kinase that regulates mitosis, to its surface and engages spindle microtubules to secure its division and inheritance into both daughter cells.
BackgroundMembers of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known.Methodology/Principal FindingsHere, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus.Conclusions/SignificancehMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.