1 DISRUPT Micro-Flake Verbenone Bark Beetle Anti-Aggregant flakes (Hercon Environmental, Inc., Emigsville, Pennsylvania) were applied in two large-scale tests to assess their efficacy for protecting whitebark pine Pinus albicaulis Engelm. from attack by mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytinae) (MPB). At two locations, five plots of equivalent size and stand structure served as untreated controls. All plots had early-to mid-outbreak beetle populations (i.e. 7.1-29.2 attacked trees/ha). Verbenone was applied at 370 g/ha in both studies. Intercept traps baited with MPB aggregation pheromone were placed near the corners of each plot after the treatment in order to monitor beetle flight within the plots. Trap catches were collected at 7-to 14-day intervals, and assessments were made at the end of the season of stand structure, stand composition and MPB attack rate for the current and previous years. 2 Applications of verbenone flakes significantly reduced the numbers of beetles trapped in treated plots compared with controls at both sites by approximately 50% at the first collection date. 3 The applications also significantly reduced the proportion of trees attacked in both Wyoming and Washington using the proportion of trees attacked the previous year as a covariate in the model for analysis of current year attack rates; in both sites, the reduction was ≥ 50%. 4 The flake formulation of verbenone appears to have promise for area-wide treatment by aerial application when aiming to control the mountain pine beetle in whitebark pine forests.
In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (Dendroctonus ponderosae Hopkins) in two studies. The first was conducted on replicated 4.04-ha plots in lodgepole pine stands (California, 2008) and the second on 0.81-ha plots in whitebark pine stands (Washington, 2010). In both studies, D. ponderosae population levels were moderate to severe. The treatments were 1) push-only (D. ponderosae antiaggregant semiochemicals alone); 2) push-pull (D. ponderosae antiaggregants plus perimeter traps placed at regular intervals, baited with four-component D. ponderosae aggregation pheromone); and 3) untreated controls. We installed monitoring traps baited with two-component D. ponderosae lures inside each plot to assess effect of treatments on beetle flight. In California, fewer beetles were collected in push-pull treated plots than in control plots, but push-only did not have a significant effect on trap catch. Both treatments significantly reduced the rate of mass and strip attacks by D. ponderosae, but the difference in attack rates between push-pull and push-only was not significant. In Washington, both push-pull and push-only treatments significantly reduced numbers of beetles caught in traps. Differences between attack rates in treated and control plots in Washington were not significant, but the push-only treatment reduced attack rates by 30% compared with both the control and push-pull treatment. We conclude that, at these spatial scales and beetle densities, push-only may be preferable for mitigating D. ponderosae attack because it is much less expensive, simpler, and adding trap-out does not appear to improve efficacy.
A key assumption of epidemiological models is that population-scale disease spread is driven by close contact between hosts and pathogens. At larger scales, however, mechanisms such as 3 spatial structure in host and pathogen populations and environmental heterogeneity could alter disease spread. The assumption that small-scale transmission mechanisms are sufficient to explain large-scale infection rates, however, is rarely tested. Here we provide a rigorous test 6 using an insect-baculovirus system. We fit a mathematical model to data from forest-wide epizootics, while constraining the model parameters with data from branch-scale experiments, a difference in spatial scale of four orders of magnitude. This experimentally-constrained model 9 fits the epizootic data well, supporting the role of small-scale transmission, but variability is high. We then compare this model's performance to an unconstrained model that ignores the experimental data, which serves as a proxy for models with additional mechanisms. The uncon-12 strained model has a superior fit, revealing a higher transmission rate across forests compared to branch-scale estimates. Our study suggests that small-scale transmission is insufficient to explain baculovirus epizootics. Further research is needed to identify the mechanisms that contribute to 15 disease spread across large spatial scales, and synthesizing models and multi-scale data is key to understanding these dynamics. 2.
To develop safe and effective methods to protect whitebark pines, Pinus albicaulis Engelmann, and limber pines, Pinus flexilis James, from attack by mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), we compared verbenone and verbenone plus green leaf volatiles (GLVs) for prevention of beetle attack. We used two strategies: area-wide protection where semiochemical-releasing flakes are dispersed over the forest floor, and individual tree tests where flakes are applied to tree trunks. The area-wide bioassays were conducted by applying verbenone- and GLV-releasing flakes without stickers to the forest floor on 0.81-ha plots dominated by whitebark pines in the State of Washington with four replicates. We conducted individual tree bioassays by applying the same formulations with stickers to whitebark and limber pines in Montana and Colorado, respectively. In all three situations, both verbenone-alone and verbenone plus GLVs significantly increased the proportion of trees escaping mass attack by beetles, but the two formulations were not significantly different from one another. Despite a lack of significance at a Bonferroni-adjusted α = 0.05, adding GLVs gave slightly greater absolute levels of tree protection in most cases. Monitoring traps placed in the area-wide treatments in Washington showed similar outcomes for numbers of beetles trapped: both treatments had significantly fewer beetles than controls, and they were not significantly different from one another. At peak flight, however, plots with GLVs combined with verbenone had roughly 40% fewer beetles than plots with verbenone alone. GLVs are considerably cheaper than verbenone, so tests of higher application rates may be warranted to achieve enhanced tree protection at reasonable cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.