Stone et al. previously reported an association between the TBC1D1 gene variant R125W (rs35859249) and severe obesity in women from US pedigrees. We attempted to replicate this result in 9714 French Caucasian individuals, combining family-based and general population studies. We confirmed an association with familial obesity (defined as body mass index (BMI) > or = 97th percentile) in women from 1109 obesity-selected pedigrees (Z-score = 2.70, P = 0.008). Analysis of 16 microsatellite markers on chromosome 4 restricted to the 42 pedigrees carrying the TBC1D1 R125W variant allele also revealed a suggestive evidence of linkage with obesity (maximum likelihood binomial LOD of 2.73, P = 0.0002) on chromosome 4p14, where resides TBC1D1. In contrast, R125W variant was neither associated with BMI nor with obesity in a large population-based cohort. These results confirm a putative role of TBC1D1 R125W variant in familial obesity predisposition.
ObjectivesGenome-wide association studies (GWAS) have identified >100 loci independently contributing to type 2 diabetes (T2D) risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells.MethodsThe expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq) so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function.ResultsWe found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19) with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6) with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the expression of Prc1, Srr, Zfand6, and Zfand3 was found in mouse pancreatic islets with altered beta-cell function.ConclusionsThis study showed the ability of post-GWAS functional studies to identify new genes and pathways involved in human pancreatic beta-cell function and in T2D pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.