One hundred years ago, Andrew D. Hopkins estimated the progressive delay in tree leaf-out with increasing latitude, longitude, and elevation, referred to as "Hopkins' bioclimatic law." What if global warming is altering this well-known law? Here, based on ∼20,000 observations of the leaf-out date of four common temperate tree species located in 128 sites at various elevations in the European Alps, we found that the elevation-induced phenological shift (EPS) has significantly declined from 34 d⋅1,000 m conforming to Hopkins' bioclimatic law in 1960, to 22 d⋅1,000 m in 2016, i.e., -35%. The stronger phenological advance at higher elevations, responsible for the reduction in EPS, is most likely to be connected to stronger warming during late spring as well as to warmer winter temperatures. Indeed, under similar spring temperatures, we found that the EPS was substantially reduced in years when the previous winter was warmer. Our results provide empirical evidence for a declining EPS over the last six decades. Future climate warming may further reduce the EPS with consequences for the structure and function of mountain forest ecosystems, in particular through changes in plant-animal interactions, but the actual impact of such ongoing change is today largely unknown.
Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.
The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P 50 ) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P 50 from 20.5 to 27.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P 50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.