Motivation The Gamma-Poisson distribution is a theoretically and empirically motivated model for the sampling variability of single cell RNA-sequencing counts (Grün et al., 2014; Svensson, 2020; Silverman et al., 2018; Hafemeister and Satija, 2019) and an essential building block for analysis approaches including differential expression analysis (Robinson et al., 2010; McCarthy et al., 2012; Anders and Huber, 2010; Love et al., 2014), principal component analysis (Townes et al., 2019) and factor analysis (Risso et al., 2018). Existing implementations for inferring its parameters from data often struggle with the size of single cell datasets, which can comprise millions of cells; at the same time, they do not take full advantage of the fact that zero and other small numbers are frequent in the data. These limitations have hampered uptake of the model, leaving room for statistically inferior approaches such as logarithm(-like) transformation. Results We present a new R package for fitting the Gamma-Poisson distribution to data with the characteristics of modern single cell datasets more quickly and more accurately than existing methods. The software can work with data on disk without having to load them into RAM simultaneously. Availability The package glmGamPoi is available from Bioconductor for Windows, macOS, and Linux, and source code is available on github.com/const-ae/glmGamPoi under a GPL-3 license.
Research hypotheses are often concerned with the difference between two groups and statistical tests provide indicators (like p-values or Bayes factors) about the evidence for or against such differences. The R package, ggsignif provides a quick way to visualize such pairwise indicators as an annotation in a plot, for example showing if a difference is statistically significant. ggsignif follows the principles of the grammar of graphics (Wilkinson, 2012) and provides a new layer that can be added to plots made with the ggplot2 package (Wickham, 2016).
The count table, a numeric matrix of genes × cells, is a basic input data structure in the analysis of single-cell RNA-seq data. A common preprocessing step is to adjust the counts for variable sampling efficiency and to transform them so that the variance is similar across the dynamic range. These steps are intended to make subsequent application of generic statistical methods more palatable. Here, we describe three transformations (based on the delta method, model residuals, or inferred latent expression state) and compare their strengths and weaknesses. We conclude with an outlook on future needs for the development of transformations for single-cell count data.
Protein mass spectrometry with label-free quantification (LFQ) is widely used for quantitative proteomics studies. Nevertheless, well-principled statistical inference procedures are still lacking, and most practitioners adopt methods from transcriptomics. These, however, cannot properly treat the principal complication of label-free proteomics, namely many non-randomly missing values.We present proDA, a method to perform statistical tests for differential abundance of proteins. It models missing values in an intensity-dependent probabilistic manner. proDA is based on linear models and thus suitable for complex experimental designs, and boosts statistical power for small sample sizes by using variance moderation. We show that the currently widely used methods based on ad hoc imputation schemes can report excessive false positives, and that proDA not only overcomes this serious issue but also offers high sensitivity. Thus, proDA fills a crucial gap in the toolbox of quantitative proteomics.Availability: The proDA method is implemented as an open-source R package, available on https://github.com/const-ae/proDA. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.