Currently, products that are obtained by Unmanned Aerial Systems (UAS) image processing based on structure-from-motion photogrammetry (SfM) are being investigated for use in high precision projects. Independent of the georeferencing process being done directly or indirectly, Ground Control Points (GCPs) are needed to increase the accuracy of the obtained products. A minimum of three GCPs is required to bring the results into a desired coordinate system through the indirect georeferencing process, but it is well known that increasing the number of GCPs will lead to a higher accuracy of the final results. The aim of this study is to find the suitable number of GCPs to derive high precision results and what is the effect of GCPs systematic or stratified random distribution on the accuracy of the georeferencing process and the final products, respectively. The case study involves an urban area of about 1 ha that was photographed with a low-cost UAS, namely, the DJI Phantom 3 Standard, at 28 m above ground. The camera was oriented in a nadiral position and 300 points were measured using a total station in a local coordinate system. The UAS images were processed using the 3DF Zephyr software performing a full BBA with a variable number of GCPs i.e., from four up to 150, while the number and the spatial location of check points (ChPs) was kept constant i.e., 150 for each independent distribution. In addition, the systematic and stratified random distribution of GCPs and ChPs spatial positions was analysed. Furthermore, the point clouds and the mesh surfaces that were automatically derived were compared with a terrestrial laser scanner (TLS) point cloud while also considering three test areas: two inside the area defined by GCPs and one outside the area. The results expressed a clear overview of the number of GCPs needed for the indirect georeferencing process with minimum influence on the final results. The RMSE can be reduced down to 50% when switching from four to 20 GCPs, whereas a higher number of GCPs only slightly improves the results.
Nowadays, Unmanned Aerial Systems (UASs) are a wide used technique for acquisition in order to create buildings 3D models, providing the acquisition of a high number of images at very high resolution or video sequences, in a very short time. Since low-cost UASs are preferred, the accuracy of a building 3D model created using this platforms must be evaluated. To achieve results, the dean's office building from the Faculty of “Hydrotechnical Engineering, Geodesy and Environmental Engineering” of Iasi, Romania, has been chosen, which is a complex shape building with the roof formed of two hyperbolic paraboloids. Seven points were placed on the ground around the building, three of them being used as GCPs, while the remaining four as Check points (CPs) for accuracy assessment. Additionally, the coordinates of 10 natural CPs representing the building characteristic points were measured with a Leica TCR 405 total station. The building 3D model was created as a point cloud which was automatically generated based on digital images acquired with the low-cost UASs, using the image matching algorithm and different software like 3DF Zephyr, Visual SfM, PhotoModeler Scanner and Drone2Map for ArcGIS. Except for the PhotoModeler Scanner software, the interior and exterior orientation parameters were determined simultaneously by solving a self-calibrating bundle adjustment. Based on the UAS point clouds, automatically generated by using the above mentioned software and GNSS data respectively, the parameters of the east side hyperbolic paraboloid were calculated using the least squares method and a statistical blunder detection. Then, in order to assess the accuracy of the building 3D model, several comparisons were made for the facades and the roof with reference data, considered with minimum errors: TLS mesh for the facades and GNSS mesh for the roof. Finally, the front facade of the building was created in 3D based on its characteristic points using the PhotoModeler Scanner software, resulting a CAD (Computer Aided Design) model. The results showed the high potential of using low-cost UASs for building 3D model creation and if the building 3D model is created based on its characteristic points the accuracy is significantly improved.
Abstract. Unmanned Aerial Systems (UAS) are increasingly used in different applications, including 3D urban modelling, cadastral mapping, urban planning, GIS information system and other fields because of their advantages. As a consequence, UAS equipment is constantly developed to provide more accurate results in a more reliable mode. This paper aims to evaluate the performances of a low-cost UAS system, namely DJI Phantom 4 Pro v2 equipped with a TeoKIT GNSS PPK (post-processing kinematic) module for cadastral mapping purposes. Two fights (oblique and nadir) over a residential area at 60 m height were performed and some 100 ground points were used to derive RMSE accuracies. Comparison between GNSS-aided with PPK processing and indirect georeferencing processes are performed. Given a mobile laser scanner (MLS) point cloud as ground truth, comparison with UAS point clouds and manually digitized features are also performed and reported.
Three-dimensional city models play an important role for a large number of applications in urban environments, and thus it is of high interest to create them automatically, accurately and in a cost-effective manner. This paper presents a new methodology for point cloud accuracy improvement to generate terrain topographic models and 3D building modeling with the Open Geospatial Consortium (OGC) CityGML standard, level of detail 1 (LOD1), using very high-resolution (VHR) satellite images. In that context, a number of steps are given attention (which are often (in the literature) not considered in detail), including the local geoid and the role of the digital terrain model (DTM) in the dense image matching process. The quality of the resulting models is analyzed thoroughly. For this objective, two stereo Pléiades 1 satellite images over Iasi city were acquired in September 2016, and 142 points were measured in situ by global navigation satellite system real-time kinematic positioning (GNSS-RTK) technology. First, the quasigeoid surface resulting from EGG2008 regional gravimetric model was corrected based on data from GNSS and leveling measurements using a four-parameter transformation, and the ellipsoidal heights of the 142 GNSS-RTK points were corrected based on the local quasigeoid surface. The DTM of the study area was created based on low-resolution airborne laser scanner (LR ALS) point clouds that have been filtered using the robust filter algorithm and a mask for buildings, and the ellipsoidal heights were also corrected with the local quasigeoid surface, resulting in a standard deviation of 37.3 cm for 50 levelling points and 28.1 cm for the 142 GNSS-RTK points. For the point cloud generation, two scenarios were considered: (1) no DTM and ground control points (GCPs) with uncorrected ellipsoidal heights resulting in an RMS difference (Z) for the 64 GCPs and 78 ChPs of 69.8 cm and (2) with LR ALS-DTM and GCPs with corrected ellipsoidal height values resulting in an RMS difference (Z) of 60.9 cm. The LOD1 models of 1550 buildings from the Iasi city center were created based on Pléiades-DSM point clouds (corrected and not corrected) and existing building sub-footprints, with four methods for the derivation of the building roof elevations, resulting in a standard deviation of 1.6 m against high-resolution (HR) ALS point cloud in the case of the best scenario. The proposed method for height extraction and reconstruction of the city structure performed the best compared with other studies on multiple satellite stereo imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.