A common means to increase efficiency in stationary spark ignited engines is to operate the engine with a higher air/fuel ratio of the mixture in conjunction with a higher turbulence level; however, this generally leads to severe conditions that significantly impact the inflammability of the gas–air mixture and combustion stability. Because the electric arc that forms at the spark plug is a main influencing factor in combustion, detailed research work in the field of electric arc behavior generated at spark plugs is required. This article thus presents a specially tailored test rig that is designed to facilitate an investigation of electric arc behavior under cross-flows at a spark plug typically used in gas engines. The test rig consists of a closed flow circuit for inert gases; its centerpiece is a test cell that provides optical access for high-speed imaging of the electric arc behavior at the spark plug. The required flow velocity at the spark plug is set with a blower. Flow velocities up to 30 m/s, pressures up to 60 bar and temperatures up to 80 °C can be achieved inside the flow system at the location of the spark plug. Postprocessing algorithms have been developed to automatically extract information from the high-speed images. The results reveal that the arc stretches more at a higher flow velocity as indicated by its greater arc length. In addition, it is evident that the cycle-to-cycle variation in arc length increases at higher flow velocities. The secondary voltage history and its cycle-to-cycle variation are strongly influenced by the arc length. This is reflected in the cycle-to-cycle variation of the spark energy input to the flowing gas. These results support the conclusion that spark behavior itself can be a substantial source of cycle-to-cycle variation in the combustion process observed in spark ignited gas engines.
The aim of this paper is to identify and investigate the potential and limitations of diesel–gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm3) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is ≈3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel–gas combustion process.
Interest is growing in using fully flexible diesel-gas dual fuel engines for power generation and propulsion on land and sea. Benefits such as the flexibility to adapt the type of fuel to the market situation, fail-safe operation and lower NOx emissions than diesel engines are convincing arguments for engine operators. However, diesel-gas engine concepts still suffer from lower efficiency than state-of-the-art monovalent diesel engines and spark ignited gas engines when operated in the corresponding fuel mode. To meet stringent NOx emission legislation, high diesel substitution rates are necessary, which in turn often lead to poor combustion stability. Especially with these small diesel fractions, the challenge remains to ensure stable ignition, fast combustion of the air-fuel mixture and low hydrocarbon emissions. The aim of this paper is to identify and investigate the potential and limitations of diesel-gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (< 5 % diesel fraction1). Experimental tests were carried out on a flexible single cylinder research engine (swept volume approximately 6 1) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monovalent gas engine and a state-of-the-art monovalent diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. On the other hand, the potential is already present for the dual fuel concept to compete with the diesel engine. Since the injection of pilot fuel is of major importance for flame initialization and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates and 3D-CFD simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3 % to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay and initial flame formation. An investigation of the influence of the injection timing reveals that with diesel fractions of ≤ 1.5 %, the well-known relationship between the injection timing and combustion phasing of conventional engine concepts is no longer valid. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel-gas combustion process.
In order to rise to global challenges such as climate change, environmental pollution and conservation of resources, internal combustion engine manufacturers must meet the requirements of substantially reduced emissions of CO2 and other greenhouse gases, zero pollutant emissions and increased durability. This publication addresses approaches that can help improve engine efficiency and durability through the engine crankshaft bearing and lubricant system. An understanding of the operating behavior of key engine components such as crankshaft main bearings in fired engine operation allows the development of appropriate tools for bearing condition monitoring and condition-based maintenance so as to avoid critical engine operation and engine failure as well as unnecessary engine downtime. Such tools are especially important when newly developed low viscosity oils are employed. Though these oils have the potential to reduce friction and to increase engine efficiency, their use comes with a higher risk of accelerated bearing wear and ultimately bearing failure. The specific target of this paper is therefore to obtain detailed knowledge of the influence of engine operating parameters and oil parameters on crankshaft main bearing temperature behavior and engine friction behavior in fired operation as a starting point for condition monitoring and condition-based maintenance approaches and as a basis for improving the bearing and lubricant system as a whole. To achieve this target, experimental investigations were carried out on an engine test bed employing an in-line six-cylinder heavy-duty diesel engine with a displacement of approximately 12.4 dm3. Defined and accurately reproducible engine operating conditions were ensured by comprehensive external conditioning systems for the coolant, lubricating oil, fuel, charge air and ambient air. Since the focus was on investigating the bearing and friction behavior by means of the base engine, several auxiliary systems were removed; these included the lubricating oil and coolant pumps, the front-end accessory drive and the generator. Each crankshaft main bearing was instrumented with a thermocouple on the back of its bottom bearing shell to measure the bearing temperature. Piezoelectric pressure transducers were applied to all six cylinders in order to facilitate the accurate determination of the friction mean effective pressure (FMEP) based on indicated and brake mean effective pressures. The variations in engine operating parameters (engine speed and torque) mainly serve as a reference for the variations in oil parameters. They confirm the existing knowledge that engine speed has a significant impact on FMEP and bearing temperature while the impact of engine torque is comparatively low. The variations in oil parameters reveal that lowering the viscosity grade from SAE 10W-40 to 5W-20 leads to a decrease in both bearing temperature and FMEP, which can be explained by the lower fluid friction in the bearing system and the increased mass flow and convective heat transport with the lower viscosity oil. An increase in the lubricating oil temperature at the engine inlet leads to a significant increase in bearing temperature and a decrease in FMEP; the former is explained by the increased heat influx from the lubricant oil, and the latter is caused mainly by the temperature dependency of the lubricant oil viscosity and its impact on fluid friction. The impact of engine oil inlet pressure on bearing temperature and FMEP is generally found to be low. The results will serve as the basis for future research that includes approaches to condition monitoring and evaluating improved engine operating strategies with regard to oil parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.