Abstract:The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of
Abstract:The increasing application of positron emission tomography (PET) in nuclear
Click chemistry has received considerable attention as powerful modular synthesis approach, which has found numerous applications in many areas of modern organic chemistry, drug discovery and material science. Recently, click chemistry, and in particular the copper-mediated 1,3-dipolar [3+2] cycloaddition between azides and alkynes, has also entered the field of radiopharmaceutical sciences. This review addresses the recent developments of click chemistry for the synthesis of various radiotracers for molecular imaging purposes. Click chemistry-based radiotracers that will be covered include peptides and small organic molecules containing the short-lived positron emitter fluorine-18, and the gamma-emitters technetium-99m, indium-111, and iodine-125.Today`s arsenal of radiotracers comprises more and more complex compounds ranging from small, low molecular weight compounds like amino acids, carbohydrates, neurotransmitter and hormones, to high molecular weight compounds like peptides, proteins and oligonucleotides. Hence, for the design and synthesis of radiotracers for molecular imaging purposes, special attention should be paid to the application of rapid, selective and functional grouptolerating labeling reactions. In this connection, radiopharmaceutical chemistry has especially benefited from recent advances in synthetic organic chemistry. Prominent examples are the successful application of enzyme-and transition metal-mediated reactions for the synthesis of a broad variety of radiotracers labeled with the short-lived positron emitters carbon-11 (t 1/2 = 20.4 min) and fluorine-18 (t 1/2 = 109.8 min).
Currently, targeted alpha therapy is one of the most investigated topics in radiopharmaceutical cancer management. Especially, the alpha emitter 225Ac has excellent nuclear properties and is gaining increasing popularity for the treatment of various tumor entities. We herein report on the synthesis of two universal 225Ac-chelators for mild condition radiolabeling and binding to conjugate molecules of pharmacological interest via the copper-mediated click chemistry. A convenient radiolabeling procedure was investigated as well as the complex stability proved for both chelators and two PSMA (prostate-specific membrane antigen)-targeting model radioconjugates. Studies regarding affinity and cell survival were performed on LNCaP cells followed by biodistribution studies, which were performed using LNCaP tumor-bearing mice. High efficiency radiolabeling for all conjugates was demonstrated. Cell binding studies revealed a fourfold lower cell affinity for the PSMA radioconjugate with one targeting motif compared to the radioconjugate owing two targeting motifs. Additionally, these differences were verified by in vitro cell survival evaluation and biodistribution studies, both showing a higher cell killing efficiency for the same dose, a higher tumor uptake (15%ID/g) and a rapid whole body clearance after 24 h. The synthesized chelators will overcome obstacles of lacking stability and worse labeling needs regarding 225Ac complexation using the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) chelator. Moreover, the universal functionalization expands the coverage of these chelators in combination with any sensitive bio(macro)molecule, thus improving treatment of any addressable tumor target.
Ultrasmall clearable nanoparticles possess enormous potential as cancer imaging agents. In particular, biocompatible silicon nanoparticles (Si NPs) and carbon quantum dots (CQDs) hold great potential in this regard. Their facile surface functionalization easily allows the introduction of different labels for in vivo imaging. However, to date, a thorough biodistribution study by in vivo positron emission tomography (PET) and a comparative study of Si vs. C particles of similar size are missing. In this contribution, ultrasmall (size <5 nm) Si NPs and CQDs were synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FTIR), absorption and steady-state emission spectroscopy. Subsequent functionalization of NPs with a near-infrared dye (Kodak-XS-670) or a radiolabel (64Cu) enabled a detailed in vitro and in vivo study of the particles. For radiolabeling experiments, the bifunctional chelating agent S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to the amino surface groups of the respective NPs. Efficient radiolabeling of NOTA-functionalized NPs with the positron emitter 64Cu was found. The biodistribution and PET studies showed a rapid renal clearance from the in vivo systems for both variants of the nanoparticles. Interestingly, the different derivatives investigated exhibited significant differences in the biodistribution and pharmacokinetic properties. This can mostly be attributed to different surface charge and hydrophilicity of the NPs, arising from the synthetic strategy used to prepare the particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.