A multiphotochromic hybrid system is presented in which a light‐driven overcrowded alkene‐based molecular rotary motor is connected to a dithienylethene photoswitch. Ring closing of the dithienylethene moiety, using an irradiation wavelength different from the wavelength applied to operate the molecular motor, results in inhibition of the rotary motion as is demonstrated by detailed 1H‐NMR and UV/Vis experiments. For the first time, a light‐gated molecular motor is thus obtained. Furthermore, the excitation wavelength of the molecular motor is red‐shifted from the UV into the visible‐light region upon attachment of the dithienylethene switch.
In recent years, increasing efforts have been devoted to designing new functional stimuli-responsive supramolecular assemblies. Here, we present three isomeric supramolecular coordination complexes consisting of a Pd2L4 stoichiometry. As shown by NMR, CD and X-ray studies, as well as DFT calculations, these complexes form cage-like structures by chiral self-sorting. Photochromic ligands derived from first generation molecular motors enable light-driven interconversion between the three isomers. Two of the isomers were able to form host–guest complexes opening up new prospects toward stimuli-controlled substrate binding and release.
Light‐mediated coupling of acylsilanes with indoles is reported. This photo click reaction occurs under mild conditions (415 nm) mostly in quantitative yield and provides stable silylated N,O‐acetals via light mediated siloxycarbene generation with subsequent indole‐N‐H insertion. We show that this very efficient and fully atom economic coupling process can be applied to conjugate complex systems, as documented by the clicking of carbohydrates with indole alkaloids. The method is also applicable to the conjugation of polymer chains. The linking acetal moiety can be readily cleaved and it is also shown that wavelength‐selective coupling and cleavage with acyl silanes bearing a second photoactive moiety is possible. This is documented by a successful polymerization/depolymerization sequence and by a polymer folding/unfolding process.
A multiphotochromic hybrid system is presented in which a light‐driven overcrowded alkene‐based molecular rotary motor is connected to a dithienylethene photoswitch. Ring closing of the dithienylethene moiety, using an irradiation wavelength different from the wavelength applied to operate the molecular motor, results in inhibition of the rotary motion as is demonstrated by detailed 1H‐NMR and UV/Vis experiments. For the first time, a light‐gated molecular motor is thus obtained. Furthermore, the excitation wavelength of the molecular motor is red‐shifted from the UV into the visible‐light region upon attachment of the dithienylethene switch.
Light‐mediated coupling of acylsilanes with indoles is reported. This photo click reaction occurs under mild conditions (415 nm) mostly in quantitative yield and provides stable silylated N,O‐acetals via light mediated siloxycarbene generation with subsequent indole‐N‐H insertion. We show that this very efficient and fully atom economic coupling process can be applied to conjugate complex systems, as documented by the clicking of carbohydrates with indole alkaloids. The method is also applicable to the conjugation of polymer chains. The linking acetal moiety can be readily cleaved and it is also shown that wavelength‐selective coupling and cleavage with acyl silanes bearing a second photoactive moiety is possible. This is documented by a successful polymerization/depolymerization sequence and by a polymer folding/unfolding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.