Human centrin 2 (HsCen2) is an EF-hand protein that plays a critical role in the centrosome duplication and separation during cell division. We studied the structural and Ca(2+)-binding properties of two C-terminal fragments of this protein: SC-HsCen2 (T94-Y172), covering two EF-hands, and LC-HsCen2 (M84-Y172), having 10 additional residues. Both fragments are highly disordered in the apo state but become better structured (although not conformationally homogeneous) in the presence of Ca(2+) and depending on the nature of the cations (K(+) or Na(+)) in the buffer. Only the longer C-terminal domain, in the Ca(2+)-saturated state and in the presence of Na(+) ions, was amenable to structure determination by nuclear magnetic resonance. The solution structure of LC-HsCen2 reveals an open two EF-hand structure, similar to the conformation of related Ca(2+)-saturated regulatory domains. Unexpectedly, the N-terminal helix segment (F86-T94) lies over the exposed hydrophobic cavity. This unusual intramolecular interaction increases considerably the Ca(2+) affinity and constitutes a useful model for the target binding.
The molecular recognition of polyoxometalates by human serum albumin is studied using two different polyoxometalates (POMs) at pH 7.5. The results are compared with those obtained at pH 3.5 and 9.0. At pH 7.5, both POMs strongly interact with the protein with different binding behaviors. The Keggin shaped POM, [H(2)W(12)O(40)](6-) (H2W12), specifically binds the protein, forming a complex with a 1:1 stoichiometry with Ka = 2.9 x 10(6) M(-1). The binding constant decreased dramatically with the increase of the ionic strength, thus indicating a mostly electrostatic binding process. Isothermal titration calorimetry (ITC) experiments show that the binding is an enthalpically driven exothermic process. For the wheel shaped POM [NaP(5)W(30)O(110)](14-) (P5W30), there are up to five binding sites on the protein. Increasing the ionic strength changes the binding behavior significantly, leading to a simple exothermic process, with several binding sites. Competitive binding experiments indicate that the two POMs share one common binding site. In addition, they show the existence of another important binding site for P5W30. The two POMs exhibit different binding dependences on the pH. The combination of the experimental results with the knowledge of the surface map of the protein in its N-B conformation transition domain leads to the proposal for the probable binding site of POMs. The present work reveals a protein conformation change upon P5W30 binding, a new feature not explicitly documented in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.