A sharp regularity theory is established for homogeneous Gaussian fields on the unit circle. Two types of characterizations for such a field to have a given almost-sure uniform modulus of continuity are established in a general setting. The first characterization relates the modulus to the field's canonical metric; the full force of Fernique's zero-one laws and Talagrand's theory of majorizing measures is required. The second characterization ties the modulus to the field's random Fourier series representation. As an application, it is shown that the fractional stochastic heat equation has, up to a non-random constant, a given spatial modulus of continuity if and only if the same property holds for a fractional antiderivative of the equation's additive noise; a random Fourier series characterization is also given. r 2004 Elsevier Inc. All rights reserved. MSC: primary 60G15; secondary 60G17; 60H15; 42A16
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.