The main goal of the present work is to determine the hand that has written two newly discovered documents in Romania. For giving the proper answer, the authors introduced the notion of “Ideal Representative”, namely of an object that very well represents the corresponding ideal alphabet symbol that a writer had in his/her mind when writing a document by hand. Moreover, the authors have introduced a novel method, which leads to the optimal evaluation of the Ideal Representative of any alphabet symbol in association with any handwritten document. Furthermore, the authors have introduced methods for comparing these Ideal Representatives, so as a final decision about the hand that has written a document may be obtained with a highly considerable likelihood. The related analysis manifests that the two documents discovered in Romania in 1998, belong to the great personality of Rigas Feraios. The presented method of automatic handwriting Identification seems to be of general applicability.
A first aim of the present work is the determination of the actual sources of the “finite precision error” generation and accumulation in two important algorithms: Bernoulli’s map and the folded Baker’s map. These two computational schemes attract the attention of a growing number of researchers, in connection with a wide range of applications. However, both Bernoulli’s and Baker’s maps, when implemented in a contemporary computing machine, suffer from a very serious numerical error due to the finite word length. This error, causally, causes a failure of these two algorithms after a relatively very small number of iterations. In the present manuscript, novel methods for eliminating this numerical error are presented. In fact, the introduced approach succeeds in executing the Bernoulli’s map and the folded Baker’s map in a computing machine for many hundreds of thousands of iterations, offering results practically free of finite precision error. These successful techniques are based on the determination and understanding of the substantial sources of finite precision (round-off) error, which is generated and accumulated in these two important chaotic maps.
In the present paper, a novel approach is introduced for the study, estimation and exact tracking of the finite precision error generated and accumulated during any number of multiplications. It is shown that, as a rule, this operation is very “toxic”, in the sense that it may force the finite precision error accumulation to grow arbitrarily large, under specific conditions that are fully described here. First, an ensemble of definitions of general applicability is given for the rigorous determination of the number of erroneous digits accumulated in any quantity of an arbitrary algorithm. Next, the exact number of erroneous digits produced in a single multiplication is given as a function of the involved operands, together with formulae offering the corresponding probabilities. In case the statistical properties of these operands are known, exact evaluation of the aforementioned probabilities takes place. Subsequently, the statistical properties of the accumulated finite precision error during any number of successive multiplications are explicitly analyzed. A method for exact tracking of this accumulated error is presented, together with associated theorems. Moreover, numerous dedicated experiments are developed and the corresponding results that fully support the theoretical analysis are given. Eventually, a number of important, probable and possible applications is proposed, where all of them are based on the methodology and the results introduced in the present work. The proposed methodology is expandable, so as to tackle the round-off error analysis in all arithmetic operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.