The description of reaction regulation in enzymes responsible for activating and catalyzing small molecules (O(2), NO) requires identification of ligand movement into the binding site and out of the enzyme through specific channels and docking sites. We have used time-resolved step-scan Fourier transform infrared spectroscopy on CO-photolyzed cytochrome c oxidase ba(3) from T. thermophilus, which is responsible for the activation and reduction of both O(2) and NO, to gain insight into the structure of ligand-binding intermediates at ambient temperature. We show that, upon dissociation, the photolyzed CO becomes trapped within a ligand docking site located near the ring A propionate of heme a(3). The 2131 cm(-1) mode of the "docked" CO we have detected corresponds to the B(1) state of Mb and persists for 35 micros. The release of CO from the docking site is not followed by recombination to the heme a(3) Fe. Our analysis indicates that this behavior reflects a mechanism in which the protein near ring A of heme a(3) propionate reorganizes about the released CO from the docking site, and establishes a transient barrier that inhibits the recombination process to the heme a(3) Fe for a few milliseconds. Rebinding to heme a(3) occurs with k(2) = 29.5 s(-1). These results have implications for understanding the role of ligand binding/escape through docking sites and channels in heme-copper oxidases and, thus, in respiration.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3 ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/1708 cm(-1)) and to deprotonation of Asp-372 (1726 cm(-1)). The implications of these results with respect to the role of the ring A propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.
We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS(2)-FTIR) spectroscopy to investigate the dynamics of the heme-Cu(B) binuclear center and the protein dynamics of mammalian aa(3), Pseudomonas stutzeri cbb(3), and caa(3) and ba(3) from Thermus thermophilus cytochrome oxidases. The implications of these results with respect to (1) the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases, and (2) the proton pathways located in the ring A propionate of heme a(3)-Asp372-H(2)O site that is conserved among all structurally known oxidases are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.