BackgroundParallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user.New informationIn this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources.The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on optimized vegan functions.A beta version of the RvLab is available after registration at: https://portal.lifewatchgreece.eu/
We propose a novel variant of the multiplicative weights update method with forward-looking bestresponse strategies, that guarantees last-iterate convergence for zero-sum games with a unique Nash equilibrium. Particularly, we show that the proposed algorithm converges to an η 1/ρ -approximate Nash equilibrium, with ρ > 1, by decreasing the Kullback-Leibler divergence of each iterate by a rate of at least Ω(η 1+ 1 ρ ), for sufficiently small learning rate η. When our method enters a sufficiently small neighborhood of the solution, it becomes a contraction and converges to the Nash equilibrium of the game. Furthermore, we perform an experimental comparison with the recently proposed optimistic variant of the multiplicative weights update method, by [10], which has also been proved to attain last-iterate convergence. Our findings reveal that our algorithm offers substantial gains both in terms of the convergence rate and the region of contraction relative to the previous approach.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.