Interaction with the environment requires fast and reliable sensory processing. The visual system is confronted with a continuous flow of high-dimensional input (e.g. orientation, color, motion). From a theoretical point of view, it would be advantageous if critical information was processed independent of attentional load, i.e. preattentively. Here, we hypothesized that visual motion is such a critical signal and aimed for a neural signature of its preattentive encoding. Furthermore, we were interested in the neural correlates of predictability of linear motion trajectories based on the presence or absence of preceding motion. We presented a visual oddball paradigm and studied event-related potentials (ERPs). Stimuli were linearly moving Gabor patches that disappeared behind an occluder. The difference between deviant and standard trials was a trajectory change which happened behind the occluder in deviant trials only, inducing a prediction error. As hypothesized, we found a visual mismatch negativity-component over parietal and occipital electrodes. In a further condition, trials without preceding motion were presented in which the patch just appeared from behind the occluder and, hence, was not predictable. We found larger ERP-components for unpredictable stimuli. In summary, our results provide evidence for a preattentive and predictive processing of linear trajectories of visual motion.
Humans can perceive and estimate approximate numerical information, even when accurate counting is impossible e.g., due to short presentation time. If the number of objects to be estimated is small, typically around 1–4 items, observers are able to give very fast and precise judgments with high confidence—an effect that is called subitizing. Due to its speed and effortless nature subitizing has usually been assumed to be preattentive, putting it into the same category as other low level visual features like color or orientation. More recently, however, a number of studies have suggested that subitizing might be dependent on attentional resources. In our current study we investigated the potentially preattentive nature of visual numerical perception in the subitizing range by means of EEG. We presented peripheral, task irrelevant sequences of stimuli consisting of a certain number of circular patches while participants were engaged in a demanding, non-numerical detection task at the fixation point drawing attention away from the number stimuli. Within a sequence of stimuli of a given number of patches (called “standards”) we interspersed some stimuli of different numerosity (“oddballs”). We compared the evoked responses to visually identical stimuli that had been presented in two different conditions, serving as standard in one condition and as oddball in the other. We found significant visual mismatch negativity (vMMN) responses over parieto-occipital electrodes. In addition to the event-related potential (ERP) analysis, we performed a time-frequency analysis (TFA) to investigate whether the vMMN was accompanied by additional oscillatory processes. We found a concurrent increase in evoked theta power of similar strength over both hemispheres. Our results provide clear evidence for a preattentive processing of numerical visual information in the subitizing range.
Previous studies in the macaque monkey have provided clear causal evidence for an involvement of the medial-superior-temporal area (MST) in the perception of self-motion. These studies also revealed an overrepresentation of contraversive heading. Human imaging studies have identified a functional equivalent (hMST) of macaque area MST. Yet, causal evidence of hMST in heading perception is lacking. We employed neuronavigated transcranial magnetic stimulation (TMS) to test for such a causal relationship. We expected TMS over hMST to induce increased perceptual variance (i.e., impaired precision), while leaving mean heading perception (accuracy) unaffected. We presented eight human participants with an optic flow stimulus simulating forward self-motion across a ground plane in one of three directions. Participants indicated perceived heading. In 57% of the trials TMS pulses were applied, temporally centered on self-motion onset. TMS stimulation site was either right-hemisphere hMST, identified by an fMRI localizer, or a control-area, just outside the fMRI localizer activation. As predicted, TMS over area hMST, but not over the control-area, increased response variance of perceived heading as compared to noTMS stimulation trials. As hypothesized, this effect was strongest for contraversive self-motion. These data provide a first causal evidence for a critical role of hMST in visually-guided navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.