These findings lend support to previous investigations of the MFT by identifying that in the population assessed it provides results that are repeatable but it routinely underestimates Vo(2max) when compared to laboratory determinations. Unlike previous findings, however, these results show that when applying an arguably more appropriate analysis method, the MFT does not provide valid predictions of Vo(2max).
Objective: To establish the validity of a 15 m multistage shuttle run test (MSRT) as a predictor of anaerobic capacity (expressed as mean power output (MPO) from the 30 second Wingate anaerobic test (WAnT)) in female university standard games players. Methods: Data came from three phases using a total of 72 players (mean (SD) age 20.3 (1.5) years, body mass 64.9 (8.8) kg, and stature 1.67 (0.04) m). The repeatability of the MSRT was assessed in phase 1 by applying 95% limits of agreement (LoA) to the test and retest results from a random sample of 20 players. In phase 2, linear relations between MPO and performance on the MSRT were investigated in a random sample of 36 players. As a result, a calibration model (Y = a + bX) was developed and cross validated in phase 3, in which the remaining 36 players performed both the WAnT and the MSRT. Time (seconds) to volitional exhaustion/disqualification from the MSRT was substituted into the calibration model from which MPO was predicted. The agreement between MPO predicted and MPO measured from the WAnT was quantified using LoA. Results: Insignificant bias between repeat applications of the MSRT (mean diff (SD diff ) = 1.0 (3.5) seconds (4 (14) m), t = 1.23, p = 0.230) was found from phase 1. Data were homoscedastic (r = 0.061, p = 0.799) with LoA ¡ 6.9 seconds (¡ 27 m). In phase 2 the strongest correlation was between MPO (W/kg 0.67 ) and time to volitional exhaustion/disqualification on the MSRT; r = 0.715 (r 2 = 51.1%, p = 0.0005). As a result, the calibration model Conclusions:The MSRT requires minimal equipment and training of assessors, and it is easy to perform. In the population studied, it provides scores that are repeatable, and anaerobic capacity (MPO) can be successfully predicted from its performance. It would seem therefore to be a useful field based test for use by female games players, their coaches, and support scientists. I n the case of estimating the contribution of the aerobic component to athletic performance, procedures for the direct determination of maximal oxygen uptake, using incremental exercise tests to volitional exhaustion, and noninvasive methods to determine oxygen consumption are well established.1 These maximal oxygen uptake tests have long been considered the criterion gold standards against which to validate simple field tests of aerobic performance. [2][3][4] However, the ability to tolerate high rates of energy expenditure over time-a capacity for intense activity-is one of the most difficult components of athletic performance to objectively quantify. 5 6 In attempting to develop simple field tests of anaerobic capacity, scientists have struggled to agree on a criterion physiological test that will assess the anaerobic contribution to total energy supply. It is now generally considered that, ideally, needle biopsies (muscle metabolites) and arterial and venous cannulation (blood metabolites) should be used to assess the anaerobic energy supplied during short bouts of exercise.
Background: The purpose of this study was to determine if differences in strength gain are apparent following resistance training at two different exercise volumes (2-sets versus 3-sets).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.