Thioredoxin and glutathione systems are the major thiol-dependent redox systems in animal cells. They transfer via the reversible oxidoreduction of thiols the reducing equivalents of NADPH to numerous substrates and substrate reductases and constitute major defenses against oxidative stress. In this study, we cloned from the helminth parasite Echinococcus granulosus two trans-spliced mRNA variants that encode thioredoxin glutathione reductases (TGR). These variants code for mitochondrial and cytosolic selenocysteine-containing isoforms that possess identical glutaredoxin (Grx) and thioredoxin reductase (TR) domains and differ exclusively in their N termini. Western blot analysis of subcellular fractions with specific anti-TGR antibodies showed that TGR is present in both compartments. The biochemical characterization of the native purified TGR suggests that the Grx and TR domains of the enzyme can function either coupled or independently of each other, because the Grx domain can accept electrons from either TR domains or the glutathione system and the TR domains can transfer electrons to either the fused Grx domain or to E. granulosus thioredoxin.
In the present study we investigated the effects of infantile/prepubertal chronic oestrogen treatment, chemical sympathectomy with guanethidine and combined sympathectomy and chronic oestrogen treatment on developing sensory nerves of the rat uterus. Changes in sensory innervation were assessed quantitatively on uterine cryostat tissue sections stained for calcitonin gene-related peptide (CGRP). Uterine levels of NGF protein, using immunohistochemistry and ELISA, and mRNA, using Northern blots and in situ hybridization, were also measured. Finally, levels of TrkA NGF receptor in sensory neurons of T13 and L1 dorsal root ganglia (DRG), which supply the uterus, were assessed using densitometric immunohistochemistry. These studies showed that: (1) chronic oestrogen treatment led to an 83% reduction in the intercept density of CGRP-immunoreactive nerves; (2) sympathectomy had no effect on the density of uterine sensory nerves or on the pattern of oestrogen-induced changes; (3) NGF mRNA and protein increased following sympathectomy or chronic oestrogen treatment; and (4) oestrogen produced increased intensity of labelling (28%) for TrkA receptors in small-diameter sensory neurons, but decreased labelling (13%) in medium-sized neurons, which represent the large majority of the DRG neurons supplying the upper part of the uterine horn. Contrary to expectations, increased levels of NGF after sympathectomy and oestrogen treatment did not lead to increased sensory innervation of the uterus. The possibility that alterations in neuronal levels of TrkA contribute to the lack of response of uterine sensory nerves to the oestrogen-induced increase in NGF levels is discussed.
Local protein synthesis within axons has been studied on a limited scale. In the present study, several techniques were used to investigate this synthesis in sciatic nerve, and to show that it increases after damage to the axon. Neurofilament (NF) mRNAs were probed by RT-PCR, Northern blot and in situ hybridization in axons of intact rat sciatic nerve, and in proximal or distal stumps after sciatic nerve transection. RT-PCR demonstrated the presence of NF-L, NF-M and NF-H mRNAs in intact sciatic nerve, as well as in proximal and distal stumps of severed nerves. Northern blot analysis of severed nerve detected NF-L and NF-M, but not NF-H. This technique did not detect the three NFs mRNAs in intact nerve. Detection of NF-L and NF-M mRNA in injured nerve, however, indicated that there was an up-regulation in response to nerve injury. In situ hybridization showed that NF-L mRNA was localized in the Schwann cell perinuclear area, in the myelin sheath, and at the boundary between myelin sheath and cortical axoplasm. RNA and protein synthesizing activities were always greater in proximal as compared to distal stumps. NF triplet proteins were also shown to be synthesized de novo in the proximal stump. The detection of neurofilament mRNAs in nerves, their possible upregulation during injury and the synthesis of neurofilament protein triplet in the proximal stumps, suggest that these mRNAs may be involved in nerve regeneration, providing a novel point of view of this phenomenon.
Although recent studies have provided a detailed understanding of cellular interactions occurring during the development of the CNS, little is known about the molecular signals which during the peri and postnatal periods ensure its maturation and functionality. Using the mammalian spinal cord as a model, we have designed experiments to examine the main changes in gene expression occurring during this critical transition. In this paper we describe the cloning and characterization of the rat hypoxia induced gene-1 (Hig-1 ), its expression pattern during spinal cord maturation and in situ localization of its mRNA. We show an increase in Hig-1 expression between P1 and P15 in the spinal cord and a differential spatial pattern. In the P1 spinal cord we observed preferential expression in regions of dorsal laminae II and III and laminae IX ventrally; while in P8, the distribution was more widespread and overall expression was increased. Hig-1 is also widely expressed in the brain. Results of in situ hybridization experiments, as well as particular features concerning ESTs, led us to propose the expression of an antisense mRNA. Primer-specific RT-PCR demonstrates the presence of this aHig-1 transcript whose structure has not yet been characterized. The high homology between putative rHig-1 protein and human-and murine-predicted sequences, as well as its characteristic expression in the Central Nervous System, are indicative of a specific role which could be related to apoptosis signaling during postnatal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.