FOXP1, FOXP2, and FOXP4 are three members of the FOXP gene subfamily of transcription factors involved in the development of the central nervous system. Previous studies have shown that the transcriptional activity of FOXP1/2/4 is regulated by homo- and heterodimerization. However, their transcriptional gene targets in the developing brain are still largely unknown. FOXP2 regulates the expression of many genes important in embryonic development, including WNT and Notch signaling pathways. In this study, we investigate whether dimerization of FOXP1/2/4 leads to differential expression of ten known FOXP2 target genes (CER1, SFRP4, WISP2, PRICKLE1, NCOR2, SNW1, NEUROD2, PAX3, EFNB3, and SLIT1). FOXP1/2/4 open-reading frames were stably transfected into HEK293 cells, and the expression level of these FOXP2 target genes was quantified using real-time polymerase chain reaction. Our results revealed that the specific combination of FOXP1/2/4 dimers regulates transcription of various FOXP2 target genes involved in early neuronal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.