The field of gut nutrient chemosensing is evolving rapidly. Recent advances have uncovered the mechanism by which specific nutrient components evoke multiple metabolic responses. Deorphanization of G protein-coupled receptors (GPCRs) in the gut has helped identify previously unliganded receptors and their cognate ligands. In this review, we discuss nutrient receptors, their ligand preferences, and the evoked neurohormonal responses. Family A GPCRs includes receptor GPR93, which senses protein and proteolytic degradation products, and free fatty acid-sensing receptors. Short-chain free fatty acids are ligands for FFA2, previously GPR43, and FFA3, previously GPR41. FFA1, previously GPR40, is activated by long-chain fatty acids with GPR120 activated by medium- and long-chain fatty acids. The GPR119 agonist ethanolamide oleoylethanolamide (OEA) and bile acid GPR131 agonists have also been identified. Family C receptors ligand preferences include L-amino acids, carbohydrate, and tastants. The metabotropic glutamate receptor (mGluR), calcium-sensing receptor (CaR), and GPCR family C, group 6, subtype A receptor (GPRC6A) mediate L-amino acid-sensing. Taste receptors have a proposed role in intestinal chemosensing; sweet, bitter, and umami evoke responses in the gut via GPCRs. The mechanism of carbohydrate-sensing remains controversial: the heterodimeric taste receptor T1R2/T1R3 and sodium glucose cotransporter 1 (SGLT-1) expressed in L cells are the two leading candidates. Identification of specific nutrient receptors and their respective ligands can provide novel therapeutic targets for the treatment of diabetes, acid reflux, foregut mucosal injury, and obesity.
Dipeptidyl peptidase IV-β (DPP IV-β) is a novel protein which shows a peptidase activity similar to the T-cell-activation antigen CD26. To further characterize this DPP IV-β and confirm its cell surface expression, we have developed a purification strategy using the CD26 Ϫ cell line C8166. The purification process includes biotinylation of cell surface proteins before preparation of cell extracts and processing by gel-filtration, ion-exchange and lectin chromatographies. Consistent with the molecular mass of DPP IV-β estimated by gel-filtration chromatography, the final purified fraction, manifesting a typical DPP IV activity, showed a major biotinylated 75Ϫ80-kDa band in SDS/PAGE, thus suggesting the monomeric nature of this enzyme. Kinetic parameters of DPP IV-β and the sensitivity to a new family of irreversible DPP IV inhibitors, were studied in comparison to CD26. Both enzymes followed a Michaelis kinetics with different K m values for Gly-Pro-NH-Np (NH-Np, para-nitroanilide) hydrolysis (0.28 Ϯ 0.05 mM and 0.12Ϯ0.02 mM). More significant differences were observed in the sensitivity to inhibitors, which exerted a much higher activity on CD26 than on DPP IV-β. These differences permitted us to study DPP IV-β expression in CD26-expressing cells, showing the expression of this new enzyme in all lymphoid cells tested, and a rapid enhancement in phytohemagglutinin-stimulated or protein-A-stimulated peripheral blood mononuclear cells. Our results indicate that, although DPP IV-β and CD26 are coexpressed and manifest a typical DPP IV activity, there are distinct features in their catalytic activities that may confer to each enzyme a complementary role in peptide processing.
The dipeptidyl peptidase IV (DPP IV) activity of CD26 is characterized by its post-proline-cleaving capacity that plays an important but not yet understood role in biological processes. Here we describe a new family of specific and irreversible inhibitors of this enzyme. Taking into account the substrate specificity of DPP IV for P2-P1><-P1' cleavage, we have designed and synthesized cyclopeptides c[(alphaH2N+)-Lys-Pro-Aba-(6-CH2-S+R2)-Glyn] 2TFA- (Aba = 3-aminobenzoic acid, R = alkyl) possessing a proline at the P1 position and a lysine in the P2 position, which allows the closing of the cycle on its side chain. These molecules show a free N-terminus, necessary for binding to the CD26 catalytic site, and a latent quinoniminium methide electrophile, responsible for inactivation. Treatment of c[alphaZ-Lys-Pro-Aba-(6-CH2-OC6H5)-Glyn], obtained by peptide synthesis in solution, with R2S/TFA simutaneously cleaved the Z protecting group and the phenyl ether function and led to a series of cyclopeptide sulfonium salts. These cyclopeptides inhibited rapidly and irreversibly the DPP IV activity of CD26, with IC50 values in the nanomolar range. Further studies were carried out to investigate the effect of the modification of the ring size (n = 2 or 4) and the nature of the sulfur substituents (R = Me, Bu, Oct). Cycle enlargement improved the inhibitory activity of the methylsulfonio cyclopeptide, whereas the increase of the alkyl chain length on the sulfur atom had no apparent effect. Other aminopeptidases were not inhibited, and a much weaker activity was observed on a novel isoform of DPP IV referred to as DPP IV-beta. Thus, this new family of irreversible inhibitors of DPP IV is highly specific to the peptidase activity of CD26.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.