Recent developments indicate that the regeneration of beta cell function and mass in patients with diabetes is possible. A regenerative approach may represent an alternative treatment option relative to current diabetes therapies that fail to provide optimal glycemic control. Here we report that the inactivation of GSK3 by small molecule inhibitors or RNA interference stimulates replication of INS-1E rat insulinoma cells. Specific and potent GSK3 inhibitors also alleviate the toxic effects of high concentrations of glucose and the saturated fatty acid palmitate on INS-1E cells. Furthermore, treatment of isolated rat islets with structurally diverse small molecule GSK3 inhibitors increases the rate beta cell replication by 2-3-fold relative to controls. We propose that GSK3 is a regulator of beta cell replication and survival. Moreover, our results suggest that specific inhibitors of GSK3 may have practical applications in beta cell regenerative therapies.
Previous work has established that destruction of cyclin B is necessary for exit from mitosis and entry into the next interphase. Sea urchin cyclin B lacking an N‐terminal domain is stable, permanently activates cdc2 kinase, resulting in mitotic arrest, and permanently activates the destruction pathway acting on full length cyclin B. Here we have compared the properties of clam cyclins A and B lacking related N‐terminal domains. Both cyclin A delta 60 and B delta 97 bind to cdc2 kinase, keep it hyperactivated and block the completion of mitosis. By adding purified delta cyclin proteins to a cell‐free system at different cell cycle times, we find that when the cell‐free system reaches the cyclin destruction point in the presence of either A delta 60 or B delta 97, the cyclin destruction pathway acting on full length cyclins fails to be turned off. However, the two cyclins differ dramatically in their ability to turn on cyclin destruction. When added to emetine‐arrested interphase lysates devoid of endogenous cyclins, only cyclin B delta 97 activates the cyclin destruction system; cyclin A delta 60 does not. This functional difference between the two cyclin types, the first to be described, provides strong support for the idea that the two cyclins have different roles in the cell cycle and suggests that one specialized role of the cyclin B‐cdc2 complex is to activate the cyclin destruction pathway and drive cells into interphase of the next cell cycle.
Skeletal muscle uncoupling by ectopic expression of mitochondrial uncoupling protein 1 (UCP1) has been shown to result in a lean phenotype in mice characterized by increased energy expenditure (EE), resistance to diet-induced obesity, and improved glucose tolerance. Here, we investigated in detail the effect of ectopic UCP1 expression in skeletal muscle on thermoregulation and energy homeostasis in HSA-mUCP1 transgenic mice. Thermoneutrality was determined to be approximately 30 degrees C for both wild-type (WT) and transgenic mice. EE, body temperature (Tb), activity, and respiratory quotient (RQ) were then measured over 24 h at ambient temperatures (Ta) of 30, 22, and 5 degrees C. HSA-mUCP1 transgenic mice showed increased activity-related EE and heat loss but similar basal metabolic rate compared with WT. Tb at resting periods was progressively decreased with declining Ta in HSA-mUCP1 transgenic mice but not in WT. Compared with WT littermates, the transgenic HSA-mUCP1 mice displayed increased RQ levels during night time, indicative of increased overall glucose oxidation, and failed to decrease their RQ levels with declining Ta. Thus increased EE caused by skeletal muscle uncoupling is clearly due to a decreased muscle energy efficiency during activity combined with increased glucose oxidation and a compromised thermoregulation associated with increased overall heat loss. At Tas below thermoneutrality, this puts increasing energy demands on the animals, whereas at thermoneutrality most differences in energy metabolism are not apparent any more.
Several Drosophila homeo box genes have been shown to control cell fates in specific positions or cell groups of the embryo. Because the mechanisms involved in the pattern formation of complex internal organs, such as the musculature and the nervous system, are still largely unknown, we sought to identify and analyze new homeo box genes specifically expressed in these tissues. Here, the molecular analysis and expression pattern of one such gene, containing both a homeo box and a PRD repeat, is described. This gene, designated S59, is expressed in a small number of segmentally repeated mesodermal cells ~2 hr postgastrulation. Gradually, four groups of S59-expressing mesodermal cells appear in each abdominal hemisegment, each one giving rise to a particular somatic muscle after fusion with surrounding myoblasts. Thus, individual precursors for particular muscles, which we call "founder cells," are specified relatively early during mesodermal development. The expression of a particular homeo box gene in these cells suggests that distinct programs of gene expression are active in subsets of mesodermal cells after germ band elongation, resulting in a specification of their developmental fates. In addition to the mesoderm, S59 is expressed in a subset of neuronal cells of the CNS and their precursors and also in cells of a small region of the midgut.[Key Words: Drosophila-, homeo box; muscle development; mesodermal and neuronal genes; midgut]
Obesity is a metabolic disorder related to improper control of energy uptake and expenditure, which results in excessive accumulation of body fat. Initial insights into the genetic pathways that regulate energy metabolism have been provided by a discrete number of obesity-related genes that have been identified in mammals. Here, we report the identification of the adipose (adp) gene, the mutation of which causes obesity in Drosophila. Loss of adp activity promotes increased fat storage, which extends the lifespan of mutant flies under starvation conditions. By contrast, adp gain-of-function causes a specific reduction of the fat body in Drosophila. adp encodes an evolutionarily conserved WD40/tetratricopeptide-repeat-domain protein that is likely to represent an intermediate in a novel signalling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.