The bulk of a tectonic plate is thought to move continously at a rate consistent with the geologic average. On the other hand, movements are highly episodic at plate boundaries. We study the plate dynamics that relate to these two different modes by modelling the displacements observed using the global positioning system in Northeast Iceland 1987–1990. These observations were made about 10 years after an episodic divergent movement between the North American and Eurasian plates 1975–1981. The horizontal displacement field fits well a two‐dimensional model of postrupture stress relaxation assuming a thin elastic layer overlying a layer of Newtonian viscosity. This analysis indicates values of about 10 m2/s for the stress diffusivity and 0.3–2 × 1018 Pa s for the Newtonian viscosity of the lower layer. However, no significant correlation exists between the observed and modeled vertical displacements probably because of the relative inaccuracy of the vertical component observations. Assuming that contemporary plate motion is the sum of many displacements that have diffused from boundaries where episodic displacements occur periodically, we simulate the spatial transition from episodic to continuous plate movements. The plate “boundary zone” where movements are episodic or quasi‐episodic is of the order of 100 km wide, depending on the stress diffusivity (which may be fairly uniform throughout the world) and the frequency of episodic movements.
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.