If biological-motion point-light displays are presented upside down, adequate perception is strongly impaired. Reminiscent of the inversion effect in face recognition, it has been suggested that the inversion effect in biological motion is due to impaired configural processing in a highly trained expert system. Here, we present data that are incompatible with this view. We show that observers can readily retrieve information about direction from scrambled point-light displays of humans and animals. Even though all configural information is entirely disrupted, perception of these displays is still subject to a significant inversion effect. Inverting only parts of the display reveals that the information about direction, as well as the associated inversion effect, is entirely carried by the local motion of the feet. We interpret our findings in terms of a visual filter that is tuned to the characteristic motion of the limbs of an animal in locomotion and hypothesize that this mechanism serves as a general detection system for the presence of articulated terrestrial animals.
Human observers are able to identify a person based on his or her gait. However, little is known about the underlying mechanisms and the kind of information used to accomplish such a task. In this study, participants learned to discriminate seven male walkers shown as point-light displays from frontal, half-profile, or profile view. The displays were gradually normalized with respect to size, shape, and walking frequency, and identification performance was measured. All observers quickly learned to discriminate the walkers, but there was an overall advantage in favor of the frontal view. No effect of size normalization was found, but performance deteriorated when shape or walking frequency was normalized. Presenting the walkers from novel viewpoints resulted in a further decrease in performance. However, even after applying all normalization steps and rotating the walker by 90º, recognition performance was still nearly three times higher than chance level.
We examined the role of kinematic information for person identification. Observers learned to name seven walkers shown as point-light displays that were normalized by their size, shape, and gait frequency under a frontal, half-profile, or profile view. In two experiments, we analyzed the impact of individual harmonics as created by a Fourier analysis of a walking pattern, as well as the relative importance of the amplitude and the phase spectra in walkers shown from different viewpoints. The first harmonic contained most of the individual information, but performance was also above chance level when only the second harmonic was available. Normalization of the amplitude of a walking pattern resulted in a severe deterioration of performance, whereas the relative phase of the point lights was only used from a frontal viewpoint. No overall advantage for a single learning viewpoint was found, and there is considerable generalization to novel testing viewpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.