Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy.
Two types of thiamine (vitamin B) salts, thiamine mononitrate (TMN) and thiamine chloride hydrochloride (TClHCl), are used to enrich and fortify food products. Both of these thiamine salt forms are sensitive to heat, alkali, oxygen, and radiation, but differences in stability between them have been noted. It was hypothesized that stability differences between the two thiamine salts could be explained by differences in solubility, solution pH, and activation energies for degradation. This study directly compared the stabilities of TMN and TClHCl in solution over time by documenting the impact of concentration and storage temperature on thiamine degradation and calculating reaction kinetics. Solutions were prepared containing five concentrations of each thiamine salt (1, 5, 10, 20, and 27 mg/mL), and three additional concentrations of TClHCl: 100, 300, and 500 mg/mL. Samples were stored at 25, 40, 60, 70, and 80 °C for up to 6 months. Degradation was quantified over time by high-performance liquid chromatography, and percent thiamine remaining was used to calculate reaction kinetics. First-order reaction kinetics were found for both TMN and TClHCl. TMN degraded significantly faster than TClHCl at all concentrations and temperatures. For example, in 27 mg/mL solutions after 5 days at 80 °C, only 32% of TMN remained compared to 94% of TClHCl. Activation energies and solution pHs were 21-25 kcal/mol and pH 5.36-6.96 for TMN and 21-32 kcal/mol and pH 1.12-3.59 for TClHCl. TClHCl degradation products had much greater sensory contributions than TMN degradation products, including intense color change and potent aromas, even with considerably less measured vitamin loss. Different peak patterns were present in HPLC chromatograms between TMN and TClHCl, indicating different degradation pathways and products. The stability of essential vitamins in foods is important, even more so when degradation contributes to sensory changes, and this study provides a direct comparison of the stability of the two thiamine salts used to fortify foods in environments relevant to the processing and shelf-life of many foods.
This communication reports gelation of lambda-carrageenan, for the first time, in the presence of trivalent iron ions. Kappa-, iota- and lambda-carrageenans are sulfated polysaccharides used extensively in food, pharmaceutical and medical applications. Kappa- and iota-carrageenans show gelation in the presence of mono- and di-valent ions, but lambda-carrageenan yields only viscous solutions. Our results show that gelation in lambda-carrageenan indeed is possible, but with trivalent ions. X-ray fiber diffraction patterns of iron (III)-lambda-carrageenan are characteristic of highly oriented and polycrystalline fibers containing well resolved Bragg reflections. The elastic modulus (G') of the product is far greater than the loss modulus (G") indicating the thermal stability of lambda-carrageenan in the presence of iron (III) ions. This novel finding has potential to expand lambda-carrageenan’s current utility beyond a viscosifying agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.