Alzheimer's disease (AD) is a fatal neurodegenerative disorder in humans and the main cause of dementia in aging societies. The disease is characterized by the aberrant formation of β-amyloid (Aβ) peptide oligomers and fibrils. These structures may damage the brain and give rise to cerebral amyloid angiopathy, neuronal dysfunction, and cellular toxicity. Although the connection between AD and Aβ fibrillation is extensively documented, much is still unknown about the formation of these Aβ aggregates and their structures at the molecular level. Here, we combined electron cryomicroscopy, 3D reconstruction, and integrative structural modeling methods to determine the molecular architecture of a fibril formed by Aβ(1-42), a particularly pathogenic variant of Aβ peptide. Our model reveals that the individual layers of the Aβ fibril are formed by peptide dimers with face-to-face packing. The two peptides forming the dimer possess identical tilde-shaped conformations and interact with each other by packing of their hydrophobic C-terminal β-strands. The peptide C termini are located close to the main fibril axis, where they produce a hydrophobic core and are surrounded by the structurally more flexible and charged segments of the peptide N termini. The observed molecular architecture is compatible with the general chemical properties of Aβ peptide and provides a structural basis for various biological observations that illuminate the molecular underpinnings of AD. Moreover, the structure provides direct evidence for a steric zipper within a fibril formed by full-length Aβ peptide.protein aggregation | protein folding | cross-β | Frealix
SUMMARY Pin1 is a phospho-specific prolyl isomerase that regulates numerous key signaling molecules and whose deregulation contributes to disease notably cancer. However, since prolyl isomerases are often believed to be constitutively active, little is known whether and how Pin1 catalytic activity is regulated. Here we identify death associated protein kinase 1 (DAPK1), a known tumor suppressor, as a kinase responsible for phosphorylation of Pin1 on Ser71 in the catalytic active site. Such phosphorylation fully inactivates Pin1 catalytic activity and inhibits its nuclear location. Moreover, DAPK1 inhibits the ability of Pin1 to induce centrosome amplification and cell transformation. Finally, Pin1 pSer71 levels are positively correlated with DAPK1 levels and negatively with centrosome amplification in human breast cancer. Thus, phosphorylation of Pin1 Ser71 by DAPK1 inhibits its catalytic activity and cellular function, providing strong evidence for an essential role of the Pin1 enzymatic activity for its cellular function.
Receptor accessory peptidyl prolyl cis/trans isomerases (PPIases) of the FKBP and cyclophilin types form receptor heterocomplexes with different stabilities. PPIases have been found to associate with other receptor heterocomplex constituents via either proline-directed active sites or additional domains of the enzymes. The single-domain PPIases FKBP12 and FKBP12.6 are shown to interact with receptor protein kinases and calcium channels at their active sites. In contrast, heterooligomeric nuclear receptors contain multi-domain PPIases like FKBP51, FKBP52 or cyclophilin 40 that directly interact with the chaperone hsp90 via the tetratricopeptide repeat modules of the folding helper enzymes. PPIases play a critical role in the functional arrangement of components within receptor heterocomplexes.
Oligomers are intermediates of the β-amyloid (Aβ) peptide fibrillogenic pathway and are putative pathogenic culprits in Alzheimer's disease (AD). Here we report the biotechnological generation and biochemical characterization of an oligomer-specific antibody fragment, KW1. KW1 not only discriminates between oligomers and other Aβ conformations, such as fibrils or disaggregated peptide; it also differentiates between different types of Aβ oligomers, such as those formed by Aβ (1-40) and Aβ (1-42) peptide. This high selectivity of binding contrasts sharply with many other conformational antibodies that interact with a large number of structurally analogous but sequentially different antigens. X-ray crystallography, NMR spectroscopy, and peptide array measurements imply that KW1 recognizes oligomers through a hydrophobic and significantly aromatic surface motif that includes Aβ residues 18-20. KW1-positive oligomers occur in human AD brain samples and induce synaptic dysfunctions in living brain tissues. Bivalent KW1 potently neutralizes this effect and interferes with Aβ assembly. By altering a specific step of the fibrillogenic cascade, it prevents the formation of mature Aβ fibrils and induces the accumulation of nonfibrillar aggregates. Our data illuminate significant mechanistic differences in oligomeric and fibril recognition and suggest the considerable potential of KW1 in future studies to detect or inhibit specific types of Aβ conformers.camelid antibody fragments | protein aggregation | immunotherapy
Cyclophilins belong to the enzyme class of peptidyl prolyl cis/trans isomerases which catalyze the cis/trans isomerization of prolyl bonds in peptides and proteins in different folding states. Cyclophilins have been shown to be involved in a multitude of cellular functions like cell growth, proliferation, and motility. Among the 20 human cyclophilin isoenzymes, the two most abundant members of the cyclophilin family CypA and CypB exhibit specific cellular functions in several inflammatory diseases, cancer development and HCV replication. A small-molecule inhibitor on the basis of aryl 1-indanylketones has now been shown to discriminate between CypA and CypB in vitro. CypA binding of this inhibitor has been characterized by fluorescence anisotropy- and isothermal titration calorimetry-based cyclosporin competition assays. Inhibition of CypA- but not CypB-mediated chemotaxis of mouse CD4+ T cells by the inhibitor provided biological proof of discrimination in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.