Highly larvicidal strains of Bacillus sphaericus produce a binary toxin composed of 51 and 42 kDa proteins which binds to sharply delineated regions of the gastric caecum and posterior midgut of susceptible larvae of the mosquito Culex quinquefmciafus. To investigate the role of the individual subunits and the organization of functional binding regions within the toxin, plasmids were constructed for the expression in Escherichia culi of the toxin proteins and their NH2-and COOH-terminal deletion derivatives as fusions with glutathione S-transferase (GST). Toxin proteins were purified by af6nity chromatography followed by cleavage from the GST carrier with thrombin. The LCs0 values for the purified toxin proteins and their deletion derivatives were determined. The binding patterns of fluorescently labelled toxin suggested that the 51 kDa protein is the primary binding component of the toxin and mediates the regional binding and internalization of the 42kDa protein. Examination of the toxin deletion derivatives revealed that the NH2-terminal region of the 51 kDa protein was required for binding to the larval gut, whilst the COOH-terminal region was responsible for interacting with the 42 kDa protein. Toxicity was strongly correlated with the subsequent internalization of the toxin, probably by endocytosis.
Genes for 51.4- and 41.9-kDa insecticidal proteins of Bacillus sphaericus were separately cloned and expressed in Escherichia coli. Both proteins were required for toxicity. Approximately equal numbers of cells containing the 51.4- and 41.9-kDa proteins produced the greatest toxicity; excess 41.9-kDa protein did not affect toxicity, whereas excess 51.4-kDa protein reduced activity. Larvae were killed when 41.9-kDa protein was fed up to 24 h after the 51.4-kDa protein, but not when the order of feeding was reversed. Radiolabelled toxins bound in approximately equal amounts to the gastric caecum and posterior midgut of Culex quinquefasciatus larvae. Radiolabelled 51.4-kDa protein was rapidly degraded by ca. 12-13 kDa in the larval gut, while 41.9-kDa protein was degraded by 1-2 kDa. Nonreduced toxin extracted from B. sphaericus produced a band on SDS-PAGE of ca. 68-74 kDa that contained both 51.4- and 41.9-kDa proteins based on sequence analysis, and a band of ca. 51 kDa that contained primarily 41.9-kDa protein. Escherichia coli containing 51.4-kDa protein enhanced toxicity of the latter eluted SDS-PAGE band. These proteins may associate very strongly, and trace amounts of 51.4-kDa protein in preparations of 41.9-kDa protein from B. sphaericus may be responsible for the previously reported toxicity of the latter.
A series of deletion mutants have been constructed, in which varying numbers of amino acids have been deleted from both the N- and C-termini of both the 51.4- and 41.9-kDa toxins of Bacillus sphaericus. The results show that between 34-39 and 52-54 amino acids respectively at the N- and C-termini of the 51.4-kDa protein, are not essential for toxicity. In the case of the 41.9-kDa protein, the removal of only 7 amino acids from the C-terminus abolishes toxicity whilst at least 17 amino acids can be deleted from the N-terminus without loss of toxicity. A fusion protein with the 51.4-kDa derived sequence N-terminal to the 41.9-kDa sequence yielded a protein of Mr 87 kDa which was not toxic by itself. When supplemented with cells expressing only the 51.4-kDa protein, toxicity was restored. In contrast, another fusion protein, in which the gene order was reversed, was shown to be fully active in toxicity assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.