The 3D reconstruction of underwater scenes from overlapping images requires modeling the sensor. While underwater self-calibration gives good results when coupled with multi-view algorithms, calibration or pre-calibration with a pattern is still necessary when scenes are weakly textured or if there are not enough points of view of the same points; however, detecting patterns on underwater images or obtaining a good distribution of these patterns on a dataset is not an easy task. Thus, we propose a methodology to guide the acquisition of a relevant underwater calibration dataset. This process is intended to provide feedback in near real-time to the operator to guide the acquisition and stop it when a sufficient number of relevant calibration images have been reached. To perform this, pattern detection must be optimized both in time and success rate. We propose three variations of optimized detection algorithms, each of which takes into account different hardware capabilities. We present the results obtained on a homemade database composed of 60,000 images taken both in pools and at sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.