Microbial endosymbionts alter the phenotype of their host which may have cascading effects at both population and community levels. However, we currently lack information on whether the effects of viruses on both host phenotypic traits and host population demography can modify interactions with upper trophic levels. To fill this gap, we investigated whether a prevalent densovirus infecting the aphid Myzus persicae (i.e. MpDNV) can modify trophic interactions between host aphids and their natural enemies (i.e. predators and parasitoids) by influencing aphid phenotypic traits (i.e. body mass and defensive behaviours), population demography (i.e. density and age‐structure) and susceptibility towards both predation and parasitism. We found that the virus decreased aphid body mass but did not influence their behavioural defences. At the population level, the virus had a minor effect on aphid adult mortality whereas it strongly reduced the density of nymphs and influenced the stage structure of aphid populations. In addition, the virus enhanced the susceptibility of aphids to parasitism regardless of the parasitoid species. Predation rate on adult aphids was not influenced by the virus but ladybeetle predators strongly decreased the number of aphid nymphs, especially for uninfected ones compared to infected ones. As a result, the virus decreased predator effect on aphid populations. By reducing both aphid quality and availability, increasing their susceptibility to parasitism, and modulating predator effect on aphid populations, we highlighted that viral endosymbionts can be prevalent drivers of their host ecology as they modify their phenotypes and interspecific interactions. These virus‐mediated ecological effects may have consequences on enemies foraging strategies as well as trophic webs dynamics and structure.
Sarracenia pitcher plants display interspecific differences in prey, so far only explained by pitcher morphology. We hypothesized that pitcher odours play a role in prey composition. We first compared odour and prey compositions among Sarracenia taxa grown together, forming a kinship gradient from S. purpurea known to capture primarily ants towards S. leucophylla known to capture many flying insects: S. purpurea, S. X mitchelliana, and S. X Juthatip soper & S. X leucophylla horticultural hybrids. We then measured several pitcher traits to disentangle the contributions of morphology and odour to prey variation. The pitcher odours were as diverse as those of generalist-pollinated flowers but with notable differences among taxa, reflecting their relatedness. VOC similarity analyses revealed taxon specificities, that mirrored those revealed by prey similarity analyses. S. X leucophylla stood out by being more specialised in flying insects like bees and moths and by releasing more monoterpenes known to attract flower visitors. S. X Juthatip soper trapped as many bees but fewer moths, sesquiterpenes contributing less to its scent. Ants and Diptera were the main prey of the other two with fatty-acid-derivative-dominated scents. Quantities of the different prey groups can be inferred 98% from quantities of the odour classes and pitcher dimensions. Two syndromes were revealed: ants associated with fatty-acid-derivatives and short pitchers; flying insects associated with monoterpenes, benzenoids and tall pitchers. In S. X leucophylla, emission rate of fatty-acid-derivatives and pitcher length explained most variation in ant captures; monoterpenes and pitcher length explained most variation in bee and moth captures; monoterpenes alone explained most variation in Diptera and wasp captures. Our results suggest that odours are key factors of the diet composition of pitcher plants. They support the hypothesis of perceptual exploitation of insect biases in carnivorous plants and provide new insights into the olfactory preferences of insect groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.