International audienceData centres are powerful ICT facilities which constantly evolve in size, complexity, and power consumption. At the same time users' and operators' requirements become more and more complex. However, existing data centre frameworks do not typically take energy consumption into account as a key parameter of the data centre's configuration. To lower the power consumption while fulfilling performance requirements we propose a flexible and energy-aware framework for the (re)allocation of virtual machines in a data centre. The framework, being independent from the data centre management system, computes and enacts the best possible placement of virtual machines based on constraints expressed through service level agreements. The framework's flexibility is achieved by decoupling the expressed constraints from the algorithms using the Constraint Programming (CP) paradigm and programming language, basing ourselves on a cluster management library called Entropy. Finally, the experimental and simulation results demonstrate the effectiveness of this approach in achieving the pursued energy optimization goals
We introduce Cloud4IoT, a platform offering automatic deployment, orchestration and dynamic configuration of IoT support software components and data-intensive applications for data processing and analytics, thus enabling plug-andplay integration of new sensor objects and dynamic workload scalability. Cloud4IoT enables the concept of Infrastructure as Code in the IoT context: it empowers IoT operations with the flexibility and elasticity of Cloud services. Furthermore it shifts traditionally centralized Cloud architectures towards a more distributed and decentralized computation paradigm, as required by IoT technologies, bridging the gap between Cloud Computing and IoT ecosystems. Thus, Cloud4IoT is playing a role similar to the one covered by solutions like Fog Computing, Cloudlets or Mobile Edge Cloud.The hierarchical architecture of Cloud4IoT hosts a central Cloud platform and multiple remote edge Cloud modules supporting dedicated devices, namely the IoT Gateways, through which new sensor objects are made accessible to the platform. Overall, the platform is designed in order to support systems where IoT-based and data intensive applications may pose specific requirements for low latency, restricted available bandwidth, or data locality.Cloud4IoT is built on several Open Source technologies for containerisation and implementations of standards, protocols and services for the IoT. We present the implementation of the platform and demonstrate it in two different use cases.
The digital revolution led by the Internet of Things (IoT) is already reshaping several traditional business sectors. Moreover, because of its very nature, the promise of the IoT is also to reduce energy consumption and pollutant emissions in several environmental scenarios. At the same time, it is desirable to keep the development of IoT as sustainable as possible, hence truly realizing the vision of the green IoT. In this paper, we show how a full-stack IoT framework can alleviate some real environmental problems afflicting countries in Western Africa. We present three real IoT-based deployments currently hosted in two rural areas of Senegal and Ghana and one metropolitan area of Togo. These testbeds are connected to a Cloud-based software platform, purposely designed and engineered to address some very specific environmental, economic, and social requirements of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.