Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼ 2.5 vs. 0.5-1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds.
In everyday life, vestibular sensors are activated by both self-generated and externally applied head movements. The ability to distinguish inputs that are a consequence of our own actions (i.e., active motion) from those that result from changes in the external world (i.e., passive or unexpected motion) is essential for perceptual stability and accurate motor control. Recent work has made progress toward understanding how the brain distinguishes between these two kinds of sensory inputs. We have performed a series of experiments in which single-unit recordings were made from vestibular afferents and central neurons in alert macaque monkeys during rotation and translation. Vestibular afferents showed no differences in firing variability or sensitivity during active movements when compared to passive movements. In contrast, the analyses of neuronal firing rates revealed that neurons at the first central stage of vestibular processing (i.e., in the vestibular nuclei) were effectively less sensitive to active motion. Notably, however, this ability to distinguish between active and passive motion was not a general feature of early central processing, but rather was a characteristic of a distinct group of neurons known to contribute to postural control and spatial orientation. Our most recent studies have addressed how vestibular and proprioceptive inputs are integrated in the vestibular cerebellum, a region likely to be involved in generating an internal model of self-motion. We propose that this multimodal integration within the vestibular cerebellum is required for eliminating self-generated vestibular information from the subsequent computation of orientation and posture control at the first central stage of processing.
Early vestibular processing in macaque monkeys is inherently nonlinear and is optimized to detect specific features of self-motion.
The superior colliculus (SC) is an excellent substrate to study sensorimotor transformations. To date, the spatial and temporal properties of population activity along its dorsoventral axis have been inferred from single electrode studies. Here, we recorded SC population activity in non-human primates using a linear multi-contact array during delayed saccade tasks. We show that during the visual epoch, information appeared first in dorsal layers and systematically later in ventral layers. During the delay period, the laminar organization of low-spiking rate activity matched that of the visual epoch. During the pre-saccadic epoch, spiking activity emerged first in a more ventral layer, ~ 100 ms before saccade onset. This buildup of activity appeared later on nearby neurons situated both dorsally and ventrally, culminating in a synchronous burst across the dorsoventral axis, ~ 28 ms before saccade onset. Collectively, these results reveal a principled spatiotemporal organization of SC population activity underlying sensorimotor transformation for the control of gaze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.