For an autonomous vehicle, situation understanding is a key capability towards safe and comfortable decisionmaking and navigation. Information is in general provided by multiple sources. Prior information about the road topology and traffic laws can be given by a High Definition (HD) map while the perception system provides the description of the space and of road entities evolving in the vehicle surroundings. In complex situations such as those encountered in urban areas, the road user behaviors are governed by strong interactions with the others, and with the road network. In such situations, reliable situation understanding is therefore mandatory to avoid inappropriate decisions. Nevertheless, situation understanding is a complex task that requires access to a consistent and non-misleading representation of the vehicle surroundings. This paper proposes a formalism (an interaction lane grid) which allows to represent, with different levels of abstraction, the navigable and interacting spaces which must be considered for safe navigation. A top-down approach is chosen to assess and characterize the relevant information of the situation. On a high level of abstraction, the identification of the areas of interest where the vehicle should pay attention is depicted. On a lower level, it enables to characterize the spatial information in a unified representation and to infer additional information in occluded areas by reasoning with dynamic objects.This work is carried out within SIVALab, a shared laboratory between Renault and Heudiasyc (UTC/CNRS), and financed by the CNRS.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.