Cells turn off the mitotic inhibitor Wee1 to enter into mitosis. Allard et al. show how cell growth progressively inhibits fission yeast Wee1 through dynamic bursts of localization to cortical node structures that contain Wee1 inhibitory kinases.
Half of all vertebrate species share a series of chromosome fusions that preceded the teleost genome duplication (TGD), but we do not understand the causative evolutionary mechanisms. The “Robertsonian-translocation hypothesis” suggests a regular fusion of each ancestral acro- or telocentric chromosome to just one other by centromere fusions, thus halving the karyotype. An alternative “genome-stirring hypothesis” posits haphazard and repeated fusions, inversions, and reciprocal and nonreciprocal translocations. To study large-scale karyotype reduction, we investigated the decrease of chromosome numbers in Antarctic notothenioid fish. Most notothenioids have 24 haploid chromosomes, but bullhead notothen (Notothenia coriiceps) has 11. To understand mechanisms, we made a RAD-tag meiotic map with ∼10,000 polymorphic markers. Comparative genomics aligned about a thousand orthologs of platyfish and stickleback genes along bullhead chromosomes. Results revealed that 9 of 11 bullhead chromosomes arose by fusion of just two ancestral chromosomes and two others by fusion of three ancestral chromosomes. All markers from each ancestral chromosome remained contiguous, implying no inversions across fusion borders. Karyotype comparisons support a history of: (1) Robertsonian fusions of 22 ancestral chromosomes in pairs to yield 11 fused plus two small unfused chromosomes, like N. angustata; (2) fusion of one of the remaining two ancestral chromosomes to a preexisting fused pair, giving 12 chromosomes like N. rossii; and (3) fusion of the remaining ancestral chromosome to another fused pair, giving 11 chromosomes in N. coriiceps. These results raise the question of what selective forces promoted the systematic fusion of chromosomes in pairs and the suppression of pericentric inversions in this lineage, and provide a model for chromosome fusions in stem teleosts.
Cell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1, along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth. Biochemical fractionation revealed that Cdr2 nodes were megadalton structures enriched for activated Cdr2, which increases in level during interphase growth. In live-cell TIRF movies, Cdr2 and Cdr1 remained constant at nodes over time, but Wee1 localized to nodes in short bursts. Recruitment of Wee1 to nodes required Cdr2 kinase activity and the noncatalytic N-terminus of Wee1. Bursts of Wee1 localization to nodes increased 20-fold as cells doubled in size throughout G2. Size-dependent signaling was due in part to the Cdr2 inhibitor Pom1, which suppressed Wee1 node bursts in small cells. Thus, increasing Cdr2 activity during cell growth promotes Wee1 localization to nodes, where inhibitory phosphorylation of Wee1 by Cdr1 and Cdr2 kinases promotes mitotic entry.SummaryCells turn off the mitotic inhibitor Wee1 to enter into mitosis. This study shows how cell growth progressively inhibits fission yeast Wee1 through dynamic bursts of localization to cortical node structures that contain Wee1 inhibitory kinases.
Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant ‘timer’ specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.