Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.
Next generation mobile devices and computing architectures would benefit from ultra-high bandwidth technologies that efficiently transport and process optical signals. Subsurface fabrication can address this challenge by forming volumetric photonic integrated circuits with a more compact aerial footprint than planar on-chip circuits. These 3D optical systems may utilize densely packed low-loss, freeform optical interconnects for high volume data transfer. In this Perspective, we provide a comparative overview of the two main methods for subsurface fabrication, including our recently developed SCRIBE process, and assess the advantages and future directions of each approach. After analyzing the underlying technologies, we provide a roadmap of important steps to transition from laboratory demonstrations of individual elements to industrial-scale production of subsurface volumetric photonic integrated circuits.
By spontaneously emitting midinfrared radiation to outer space through the atmospheric window and reflecting sunlight, daytime radiative coolers achieve notable passive cooling performance. However, existing daytime radiative cooling systems generally lack the ability to adaptively switch between heating and cooling states based on ambient conditions. Herein a passive thermal regulation system that features a temperature‐dependent switchable solar reflectance from 0.05 (low temperature) to 0.8 (high temperature) is presented. This, along with a ≈0.95 midinfrared emittance, it enables automatic switching between radiative cooling and solar heating. Switchablity is enabled using a poly(N‐isopropylacrylamide) (PNIPAM) hydrogel which exhibits high solar scattering above its tunable lower critical solution temperature (LCST) and transparency below its LCST. The lower part of the hydrogel is loaded with graphite to absorb solar energy in the heating state. In testing under sunny and partly cloudy outside conditions, this system maintains a temperature close to the set LCST.
The effect of spatially varying birefringence on the focusing behavior of porous silicon (PSi) and porous silicon dioxide (PSiO2) gradient refractive index (GRIN) lenses is investigated. Both materials attain broad, tunable refractive indexes and birefringence profiles, with PSi having a maximum birefringence of ∼0.26 and PSiO2 a reduced maximum birefringence of ∼0.03 at 633 nm. These GRIN lenses exhibit polarization-dependent split focusing behavior, wherein the divergence angle between the twin foci increases with the birefringence gradient. PSi’s large birefringence allows the divergence angle to be tuned such that light focuses away from the center of the lens. These GRIN elements demonstrate how tunable birefringent materials can be used to engineer polarization-selective optical responses.
Multiphoton lithography inside a mesoporous host can create optical components with continuously tunable refractive indices in three-dimensional (3D) space. However, the process is very sensitive at exposure doses near the photoresist threshold, leading previous work to reliably achieve only a fraction of the available refractive index range for a given material system. Here, we present a method for greatly enhancing the uniformity of the subsurface micro-optics, increasing the reliable index range from 0.12 (in prior work) to 0.37 and decreasing the standard deviation (SD) at threshold from 0.13 to 0.0021. Three modifications to the previous method enable higher uniformity in all three spatial dimensions: (1) calibrating the planar write field of mirror galvanometers using a spatially varying optical transmission function which corrects for large-scale optical aberrations; (2) periodically relocating the piezoelectrically driven stage, termed piezo-galvo dithering, to reduce small-scale errors in writing; and (3) enforcing a constant time between each lateral cross section to reduce variation across all writing depths. With this new method, accurate fabrication of optics of any index between n = 1.20 and 1.57 (SD < 0.012 across the full range) was achieved inside a volume of porous silica. We demonstrate the importance of this increased accuracy and precision by fabricating and characterizing calibrated two-dimensional (2D) line gratings and flat gradient index lenses with significantly better performance than the corresponding control devices. As a visual representation, the University of Illinois logo made with 2D line gratings shows significant improvement in its color uniformity across its width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.