Fabrication of soft piezoelectric nanomaterials is essential for the development of wearable and implantable biomedical devices. However, a big challenge in this soft functional material development is to achieve a high piezoelectric property with long‐term stability in a biological environment. Here, a one‐step strategy for fabricating core/shell poly(vinylidene difluoride) (PVDF)/dopamine (DA) nanofibers (NFs) with a very high β‐phase content and self‐aligned polarization is reported. The self‐assembled core/shell structure is believed essential for the formation and alignment of β‐phase PVDF, where strong intermolecular interaction between the NH2 groups on DA and the CF2 groups on PVDF is responsible for aligning the PVDF chains and promoting β‐phase nucleation. The as‐received PVDF/DA NFs exhibit significantly enhanced piezoelectric performance and excellent stability and biocompatibility. An all‐fiber‐based soft sensor is fabricated and tested on human skin and in vivo in mice. The devices show a high sensitivity and accuracy for detecting weak physiological mechanical stimulation from diaphragm motions and blood pulsation. This sensing capability offers great diagnostic potential for the early assessment and prevention of cardiovascular diseases and respiratory disorders.
Treating vascular grafts failure requires complex surgery procedures and is associated with high risks. A real-time monitoring vascular system enables quick and reliable identification of complications and initiates safer treatments early. Here, an electric fieldassisted 3D printing technology is developed to fabricate in situ-poled ferroelectric artificial arteries that offer battery-free real-time blood pressure sensing and occlusion monitoring capability. The functional artery architecture is made possible by the development of a ferroelectric biocomposite which can be quickly polarized during printing and reshaped into devised objects. The synergistic effect from the potassium sodium niobite particles and the polyvinylidene fluoride polymer matrix yields a superb piezoelectric performance (bulk-scale d 33 > 12 pC N −1). The sinusoidal architecture brings the mechanical modulus close to the level of blood vessels. The desired piezoelectric and mechanical properties of the artificial artery provide an excellent sensitivity to pressure change (0.306 mV mmHg −1 , R 2 > 0.99) within the range of human blood pressure (11.25-225.00 mmHg). The high pressure sensitivity and the ability to detect subtle vessel motion pattern change enable early detection of partial occlusion (e.g., thrombosis), allowing for preventing grafts failure. This work demonstrates a promising strategy of incorporating multifunctionality to artificial biological systems for smart healthcare systems.
In vivo biomechanical energy harvesting by implanted nanogenerators (i-NG) is promising for self-powered implantable medical devices (IMDs). One critical challenge to reach practical applications is the requirement of continuous direct-current (DC) output, while the low-frequency body activities typically generate discrete electrical pulses. Here, we developed an ultra-stretchable micro-grating i-NG system that could function as a battery-free DC micro-power supply. Packaged by a soft silicone elastomer with a cavity design, the i-NG exhibited an ultralow Young’s modulus of ~45 kPa and a high biocompatibility to soft biological tissues. The i-NG was implanted inside the abdominal cavity of Sprague Dawley (SD) adult rats, and directly converted the slow diaphragm movement during normal respiration into a high-frequency alternative current (AC) electrical output, which were readily transmitted into a continuous ~2.2 V DC output after being integrated with a basic electrical circuit. A LED was constantly operated by the breath-driven i-NG without the aid of any battery component. This solely biomechanical energy-driven DC micro-power supply offers a promising solution for the development of self-powered IMDs.
Cellulosic materials are attractive candidates for nature piezoelectrics. Vertically aligned cellulose nanocrystal (CNC) films are expected to show strong piezoelectricity as the largest dipole moment in CNCs exists along the cellulose chain. In this work, we adapted the confinement cell technology that was used to fabricate colloidal opal structures to align CNC rods vertically on a large scale. The high interfacial energy between the CNC-poly(tetrafluoroethylene) (PTFE) surface and torque induced by the shear force led to a large degree to the vertical alignment of CNC rods. An external DC electric field was added to further align the dipole moment of each CNC to the same direction. The as-obtained CNC film displayed excellent piezoelectric performance, and the piezoelectric coefficient was found to be 19.3 ± 2.9 pm/V, comparable to the piezoelectric coefficient d 33 of poly(vinylidene difluoride) (PVDF) (20–30 pm/V). This work presents a new class of high-performance piezoelectric polymeric materials from renewable and biocompatible natural resources.
Hepatic ischemia-reperfusion injury (IRI), which mainly results from excessive reactive oxygen species (ROS) generated by a reperfusion burst of oxygen, has long been a major cause of liver dysfunction and failure after surgical procedures. Here, a monodispersed hydrophilic carbohydrate-derived nanoparticle (C-NP) was synthesized as a nanoantioxidant that could effectively prevent hepatic IRI. The spherical C-NPs had a size of ∼78 ± 11.3 nm covered with polar surface groups. They were well dispersible in water with good colloidal stability, nontoxicity, and good ROS scavenging capability. The C-NPs also exhibited good circulation lifetime, effective delivery to liver, and gradual degradability with an ability to assist the IRI group maintaining a normal and healthy liver status. The pathology mechanism of C-NPs in hepatic IRI was confirmed to be scavenging of excessive ROS by C-NPs. The effective therapeutic treatment of C-NPs in living animals revealed a great potential in clinical prevention for hepatic IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.