Abstract-Collecting grasp data for learning and benchmarking purposes is very expensive. It would be helpful to have a standard database of graspable objects, along with a set of stable grasps for each object, but no such database exists. In this work we show how to automate the construction of a database consisting of several hands, thousands of objects, and hundreds of thousands of grasps. Using this database, we demonstrate a novel grasp planning algorithm that exploits geometric similarity between a 3D model and the objects in the database to synthesize form closure grasps. Our contributions are this algorithm, and the database itself, which we are releasing to the community as a tool for both grasp planning and benchmarking.
Abstract-In this paper, we build upon recent advances in neuroscience research which have shown that control of the human hand during grasping is dominated by movement in a configuration space of highly reduced dimensionality. We extend this concept to robotic hands and show how a similar dimensionality reduction can be defined for a number of different hand models. This framework can be used to derive planning algorithms that produce stable grasps even for highly complex hand designs. Furthermore, it offers a unified approach for controlling different hands, even if the kinematic structures of the models are significantly different. We illustrate these concepts by building a comprehensive grasp planner that can be used on a large variety of robotic hands under various constraints.
Planning realizable and stable grasps on 3D objects is crucial for many robotics applications, but grasp planners often ignore the relative sizes of the robotic hand and the object being grasped or do not account for physical joint and positioning limitations. We present a grasp planner that can consider the full range of parameters of a real hand and an arbitrary object, including physical and material properties as well as environmental obstacles and forces, and produce an output grasp that can be immediately executed. We do this by decomposing a 3D model into a superquadric 'decomposition tree' which we use to prune the intractably large space of possible grasps into a subspace that is likely to contain many good grasps. This subspace can be sampled and evaluated in GraspIt!, our 3D grasping simulator, to find a set of highly stable grasps, all of which are physically realizable. We show grasp results on various models using a Barrett hand.
This paper propose a novel framework for a data driven grasp planner that indexes partial sensor data into a database of 3D models with known grasps and transfers grasps from those models to novel objects. We show how to construct such a database and also demonstrate multiple methods for matching into it, aligning the matched models with the known sensor data of the object to be grasped, and selecting an appropriate grasp to use. Our approach is experimentally validated in both simulated trials and trials with robots.
Abstract-To grasp a novel object, we can index it into a database of known 3D models and use precomputed grasp data for those models to suggest a new grasp. We refer to this idea as data-driven grasping, and we have previously introduced the Columbia Grasp Database for this purpose. In this paper we demonstrate a data-driven grasp planner that requires only partial 3D data of an object in order to grasp it. To achieve this, we introduce a new shape descriptor for partial 3D range data, along with an alignment method that can rigidly register partial 3D models to models that are globally similar but not identical. Our method uses SIFT features of depth images, and encapsulates "nearby" views of an object in a compact shape descriptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.