The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.
Background: ATP7B trafficking from Golgi to vesicles is essential for copper homeostasis. Results: Mutating Ser-340/341 alters the inter-domain contacts, diminishes protein phosphorylation, and shifts ATP7B localization to vesicles. Conclusion: Spatial arrangement of functional domains determines ATP7B readiness to traffic, whereas phosphorylation may maintain the trafficking-compatible state. Significance: The proposed mechanism explains how unrelated signals trigger similar trafficking responses from ATP7B.
Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.
Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATPdependent copper transporters in human cells. V C 2017 IUBMB Life, 69(4): [226][227][228][229][230][231][232][233][234][235] 2017
Background:Copper regulates the intracellular localization of a copper transporter ATP7B; the molecular mechanism of this process is unclear. Results: Nanobodies detected transient interactions between the metal-binding domains (MBDs) and modulated intracellular localization of ATP7B. Conclusion: MBDs 1-3 form a dynamic structural module of ATP7B involved in regulation of trafficking. Significance: Nanobodies demonstrate the importance of protein dynamics in ATP7B localization in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.