On 29–30 May 2012, the Deep Convective Clouds and Chemistry experiment observed a supercell thunderstorm on the southern end of a broken line of severe storms in Oklahoma. This study focuses on an approximately 70 min period during which three mobile Doppler radars operated and a balloon‐borne electric field meter, radiosonde, and particle imager flew through the storm. An overview of the relationships among flash rates, very high frequency (VHF) source densities, and Doppler‐radar‐derived storm parameters is presented. Furthermore, the evolution of the flash distribution relative to the midlevel storm's kinematics and microphysics is examined at two times during a period of rapid storm intensification. The timing of increases in VHF counts in the 8–10 km above ground level (agl) layer, which contained the largest VHF source counts, is similar to the timing of increases in updraft mass flux, in updraft volume, and in graupel volume at approximately 5–9 km agl. Although some increases in VHF source counts had little or no corresponding increase in one or more of the other storm parameters, at least one other parameter had an increase near the time of every VHF increase, a pattern which suggests a common dependence on updraft pulses, as expected from the noninductive graupel‐ice electrification mechanism. A classic bounded weak lightning region was observed initially during storm intensification, but late in the period it appeared to be due to a wake in the flow around the updraft, rather than due to a precipitation cascade around the updraft core as is usually observed.
Proximity sounding studies typically seek to optimize several trade-offs that involve somewhat arbitrary definitions of how to define a ''proximity sounding.'' More restrictive proximity criteria, which presumably produce results that are more characteristic of the near-storm environment, typically result in smaller sample sizes that can reduce the statistical significance of the results. Conversely, the use of broad proximity criteria will typically increase the sample size and the apparent robustness of the statistical analysis, but the sounding data may not necessarily be representative of near-storm environments, given the presence of mesoscale variability in the atmosphere. Previous investigations have used a wide range of spatial and temporal proximity criteria to analyze severe storm environments. However, the sensitivity of storm environment climatologies to the proximity definition has not yet been rigorously examined.In this study, a very large set (;1200) of proximity soundings associated with significant tornado reports is used to generate distributions of several parameters typically used to characterize severe weather environments. Statistical tests are used to assess the sensitivity of the parameter distributions to the proximity criteria.The results indicate that while soundings collected too far in space and time from significant tornadoes tend to be more representative of the larger-scale environment than of the storm environment, soundings collected too close to the tornado also tend to be less representative due to the convective feedback process. The storm environment itself is thus optimally sampled at an intermediate spatiotemporal range referred to here as the Goldilocks zone. Implications of these results for future proximity sounding studies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.