Abstract-An adversary is essentially an algorithm intent on making a classification system perform in some particular way given an input, e.g., increase the probability of a false negative. Recent work builds adversaries for deep learning systems applied to image object recognition, which exploits the parameters of the system to find the minimal perturbation of the input image such that the network misclassifies it with high confidence. We adapt this approach to construct and deploy an adversary of deep learning systems applied to music content analysis. In our case, however, the input to the systems is magnitude spectral frames, which requires special care in order to produce valid input audio signals from network-derived perturbations. For two different train-test partitionings of two benchmark datasets, and two different deep architectures, we find that this adversary is very effective in defeating the resulting systems. We find the convolutional networks are more robust, however, compared with systems based on a majority vote over individually classified audio frames. Furthermore, we integrate the adversary into the training of new deep systems, but do not find that this improves their resilience against the same adversary.
Systems built using deep learning neural networks trained on low-level spectral periodicity features (DeSPerF) reproduced the most "ground truth" of the systems submitted to the MIREX 2013 task, "Audio Latin Genre Classification." To answer why this was the case, we take a closer look at the behavior of a DeSPerF system we create and evaluate using the benchmark dataset BALLROOM. We find through time stretching that this DeSPerF system appears to obtain a high figure of merit on the task of music genre recognition because of a confounding of tempo with "ground truth" in BALL-ROOM. This observation motivates several predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.