Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.
While numerous flow sensor architectures mimic the natural cilia of crickets, locusts, bats, and fish, the prediction of sensor output for given flow conditions based on the sensor properties has not been achieved. Challenges include difficulty in determining the electromechanical properties of the sensors, limited working knowledge of the boundary layer, low sensitivity to small hair deflections, and lack of models for large deflections. Within this work, hair sensors are fabricated using piezoresistive arrays of carbon nanotubes (CNTs) without traditional microelectromechanical processing. While correlating the CNT array electromechanical properties to synthesis conditions remains a challenge, a consistent, proportional, and predictable response to steady, boundary-determined air flow is obtained using theory and measurement for various lengths of hairs. The moment sensitivity is shown to scale inversely with the CNT length and stiffness to a typical maximum of 1.3 ± 0.4% resistance change nN −1 m −1 . The normalized CNT piezoresistivity is constant (1.1 ± 0.2) for a majority of the more than two dozen sensors examined despite the orders-of-magnitude variability in both sensitivity and CNT compressive modulus. The sensor sensitivity and noise both distinctly change as the flow transitions from steady and laminar to turbulent, suggesting the sensor may be capable of detecting flow transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.