An integrated experimental, computational, and non-deterministic approach is demonstrated to predict the damage tolerance of an aluminum plate reinforced with a cocured bonded quasi-isotropic E-glass/epoxy composite overlay and to determine the most sensitive material parameters and their ranges of influence on the damage tolerance of the hybrid system. To simulate the complex progressive damage in the repaired structure, a high fidelity three-dimensional finite element model is developed and validated using four-point bend testing to investigate potential damage mechanisms. A surrogate model is then generated to explore the complex parameter space of this model. Global sensitivity analysis and uncertainty quantification are performed for non-deterministic analysis to characterize the energy absorption capability of the patched structure relative to these influential design properties. Additionally, correlating the data quality of the material parameters with the sensitivity analysis results provides practical guidelines for model improvement and the design optimization of the patched structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.