AlFe2B2 was prepared by two alternative synthetic routes, arc melting and synthesis from Ga flux. In the layered crystal structure, infinite chains of B atoms are connected by Fe atoms into two-dimensional [Fe2B2] slabs that alternate with layers of Al atoms. As expected from the theoretical analysis of electronic band structure, the compound exhibits itinerant ferromagnetism, with the ordering temperature of 307 K. The measurement of magnetocaloric effect (MCE) as a function of applied magnetic field reveals isothermal entropy changes of 4.1 J kg(-1) K(-1) at 2 T and 7.7 J kg(-1) K(-1) at 5 T. These are the largest values observed near room temperature for any metal boride and for any magnetic material of the vast 122 family of layered structures. Importantly, AlFe2B2 represents a rare case of a lightweight material prepared from earth-abundant, benign reactants which exhibits a substantial MCE while not containing any rare-earth elements.
We report the crystal structure, magnetization and neutron scattering measurements on the double perovskite Ba2YOsO6. The F m3m space group is found both at 290 K and 3.5 K with cell constants a0 = 8.3541(4)Å and 8.3435(4)Å, respectively. Os 5+ (5d 3 ) ions occupy a non-distorted, geometrically frustrated face-centered-cubic (FCC) lattice. A Curie-Weiss temperature θ = −772 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long range antiferromagnetic order, consistent with a Type I FCC state below TN ∼ 69 K, is revealed by magnetization, Fisher heat capacity and elastic neutron scattering, with an ordered moment of 1.65(6) µB on Os 5+ . The ordered moment is much reduced from either the expected spin only value of ∼ 3µB or the value appropriate to 4d 3 Ru 5+ in isostructural Ba2YRuO6 of 2.2(1) µB, suggesting a role for spin orbit coupling (SOC). Triple axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T = 67.45 K, and the existence of a second ordered state. Time-of-flight inelastic neutron results reveal a large spin gap ∆ ∼ 17 meV, unexpected for an orbitally quenched, d3 electronic configuration. We discuss this in the context of the ∼ 5 meV spin gap observed in the related Ru 5+ , 4d 3 cubic double perovskite Ba2YRuO6, and attribute the ∼ 3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.
We demonstrate that the action of physical pressure, chemical compression, or aliovalent substitution in ACo2As2 (A = Eu and Ca) has a general consequence of causing these antiferromagnetic materials to become ferromagnets. In all cases, the mixed valence triggered at the electropositive A site results in the increase of the Co 3d density of states at the Fermi level. Remarkably, the dramatic alteration of magnetic behavior results from the very minor (<0.15 electron) change in the population of the 3d orbitals. The mixed valence state of Eu observed in the high-pressure (HP) form of EuCo2As2 exhibits a remarkable stability, achieving the average oxidation state of +2.25 at 12.6 GPa. In the case of CaCo2As2, substituting even 10% of Eu or La into the Ca site causes ferromagnetic ordering of Co moments. Similar to HP-EuCo2As2, the itinerant 3d ferromagnetism emerges from electronic doping into the Co layer because of chemical compression of Eu sites in Ca0.9Eu0.1Co1.91As2 or direct electron doping in Ca0.85La0.15Co1.89As2. The results reported herein demonstrate the general possibility of amplifying minor localized electronic effects to achieve major changes in material's properties via involvement of strongly correlated electrons.
The B-site ordered double perovskite Ba2CaOsO6 was studied by dc magnetic susceptibility, powder neutron diffraction and muon spin relaxation methods. The lattice parameter is a = 8.3619(6) Å at 280 K and cubic symmetry [Formula: see text] is retained to 3.5 K with a = 8.3462(7) Å. Curie-Weiss susceptibility behaviour is observed for T > 100 K and the derived constants are C = 0.3361(3) emu K mol(-1) and ΘCW = -156.2(3) K, in excellent agreement with literature values. This Curie constant is much smaller than the spin-only value of 1.00 emu K mol(-1) for a 5d(2) Os(6+) configuration, indicating a major influence of spin-orbit coupling. Previous studies had detected both susceptibility and heat capacity anomalies near 50 K but no definitive conclusion was drawn concerning the nature of the ground state. While no ordered Os moment could be detected by powder neutron diffraction, muon spin relaxation (µSR) data show clear long-lived oscillations indicative of a continuous transition to long-range magnetic order below TC = 50 K. An estimate of the ordered moment on Os(6+) is ∼ 0.2 μB, based upon a comparison with µSR data for Ba2YRuO6 with a known ordered moment of 2.2 μB. These results are compared with those for isostructural Ba2YReO6 which contains Re(5+), also 5d(2), and has a nearly identical unit cell constant, a = 8.36278(2) Å-a structural doppelgänger. In contrast, Ba2YReO6 shows ΘCW = - 616 K, and a complex spin-disordered and, ultimately, spin-frozen ground state below 50 K, indicating a much higher level of geometric frustration than in Ba2CaOsO6. The results on these 5d(2) systems are compared to recent theory, which predicts a variety of ferromagnetic and antiferromagnetic ground states. In the case of Ba2CaOsO6, our data indicate that a complex four-sublattice magnetic structure is likely. This is in contrast to the spin-disordered ground state in Ba2YReO6, despite a lack of evidence for structural disorder, for which theory currently provides no clear explanation.
A family of rare-earth cobalt phosphides La 1-x Pr x Co 2 P 2 (0 e x e 1) that belong to the ThCr 2 Si 2 structure type has been prepared and characterized by structural and magnetic methods and electronic band structure calculations. All studied quaternary phases exhibit multiple magnetic transitions, leading to an observation of ferro-and metamagnetism and magnetic pole reversal. The ferromagnetic transition temperature of LaCo 2 P 2 (132 K) increases dramatically upon substitution of Pr for La and reaches 268 K for La 0.25 Pr 0.75 Co 2 P 2 . This increase is accompanied by elongation of intralayer Co-Co distances. Variable temperature X-ray diffraction data revealed that temperature dependences of unit cell parameters, and, correspondingly, both intra-and interlayer Co-Co separations show anomalous changes at temperatures close to the ferromagnetic transition. The electronic structure calculations reveal a strong peak in the nonmagnetic density of states (DOS). This instability is removed in the spin-polarized DOS due to the splitting of the majority and minority spin subbands, in accord with the ferromagnetic ordering in the [Co 2 P 2 ] layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.