We compare the toxicity of microplastics, microfibres and nanoplastics on mussels. Mussels (Mytilus spp.) were exposed to 500 ng mL-1 of 20 µm polystyrene microplastics, 10x30 µm polyamide microfibres or 50 nm polystyrene nanoplastics for 24 h or 7 days. Biomarkers of immune response, oxidative stress response, lysosomal destabilisation and genotoxic damage were measured in haemolymph, digestive gland and gills. Microplastics and microfibres were observed in the digestive glands, with significantly higher plastic concentrations after 7-days exposure (ANOVA, P<0.05). Nanoplastics had a significant effect on hyalinocyte-granulocyte ratios (ANOVA, P<0.05), indicative of a heightened immune response. SOD activity was significantly increased followed 24 h exposure to plastics (two-way ANOVA, P<0.05), but returned to normal levels after 7-days exposure. No evidence of lysosomal destabilisation or genotoxic damage was observed from any form of plastic. The study highlights how particle size is a key factor in plastic particulate toxicity.
Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their “pathogen-associated molecular patterns” (PAMPs), which are recognized as “foreign” and used to activate protective immunity.
Propagation of human naïve pluripotent stem cells (nPSCs) relies on inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/β-catenin signalling. However, we show that nPSCs depleted of β-catenin remain dependent on XAV939. We found instead that XAV939 prevents TE induction by reducing activation of YAP, co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not mouse naïve PSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation.
Background: Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2′3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. Methods: Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer’s disease (n = 6), Parkinson’s disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-β, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1–400 μM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-β release and changes in ICAM-1 integrin expression. Results: In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander’s coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-β was observed, but it failed to reach statistical significance. Conclusions: The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics.
Background Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, the resulting cyclic dinucleotide, 2’3-cGAMP binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS- STING pathway in human neurodegenerative diseases. Methods Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer's diseases (n = 6) and Parkinson's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-β, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1-400µM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), and downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarkers interferon-β release and changes ICAM-1 integrin expression. Results In neurodegenerative brain, elevated STING protein was observed mainly in brain endothelial cells and neurons compared to non-neurodegenerative control tissues where STING protein staining was weaker in comparison. Interestingly, higher STING presence was associated with toxic protein aggregates. (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~ 2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander’s coefficient; P < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS, cell surface ICAM. In addition, a dose response in secretion of interferon-β was observed but failed to reach statistical significance. Conclusions The histological evidence show that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data suggest that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage resulting in downstream neuroinflammation hence this pathway may be a target for future STING therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.